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Abstract: Causality extraction is an essential task in natural language processing, aiming to
identify and structure causal relationships from unstructured text. While deep learning techniques
have advanced this field, challenges remain in extracting causal relationships effectively,
particularly in representing lexical features and capturing multiple and overlapping causal relations.
This paper proposes a novel method for causality extraction using a BiGRU-Attention-CRF model
with enhanced feature representation. To improve the extraction performance, character features
are integrated with pre-trained embeddings, and Iterated Dilated Convolutional Neural Networks
(IDCNNs) are employed to capture local information while minimizing information loss. The
BiGRU-Attention mechanism is utilized to extract deeper contextual information and improve
training speed compared to traditional BiLSTM models. Experimental results demonstrate that the
proposed method achieves competitive performance in causality extraction tasks, offering efficient
training and robust feature extraction. However, the model's performance is limited by the dataset
size, and it is currently confined to intra-sentence causality extraction. Future work will explore
enhancing cross-sentence and document-level causality extraction using graph convolutional
networks and low-resource question templates.

Keywords: Causality Extraction; Dilated Convolutions Networks; Gated Recurrent Unit;
SequenceLabeling.

1. Introduction
Relation extraction is an essential research direction in natural language processing, which aims at
extracting useful information from unstructured text and transforming it into structured information
for use. Among the many relations of events, causality is one of the important semantic relations, as
shown in Fig. 1, which shows the correspondence between events from before to after, from cause to
effect, and due to the existence of a large amount of causal knowledge in natural language text,
causality extraction has become an issue of vital concern in the field of artificial intelligence and has
become more and more relevant in such tasks as information retrieval[1], event prediction, intelligent
question and answer, text mining, and many other natural language processing tasks.

Fig 1. A sentence expressing a causal relation, in this case, "muscle fatigue" is the cause and "arm



muscle pain" is the result of muscle fatigue

Causality is one of the more significant associations between events. Extracting causal relationships
from texts has become a hot topic in natural language processing research. However, this research
direction has not yet formed a mature research system, evaluation rules, and datasets for public
evaluation. The lack of a unified causal sequence annotation method is one of the factors that hinder
the progress of causal extraction research [2]. Most current studies focus on the causal relationship
of a pair in an instance, but in reality, causality always exists in the form of one-to-one or one-to-
many. In addition, causal extraction models often need to be trained with more than 10 million
samples to reach the same level as humans. However, the known dataset size is much smaller than
the desired value, and some of the datasets do not apply to all current causality extraction methods
[3]. And most of the existing event causality extraction methods transform the extraction problem
into a classification problem, where information features are extracted and then classified. Although
this method was successful, the problem seems intractable in natural language processing tasks due
to the ambiguity and diversity of natural language texts, the lack of contextualization of word features
in causality extraction, and the inadequate representation of semantic features.
Traditional causality extraction methods in the past were divided into those based on pattern matching
and those based on a combination of pattern matching and machine learning. The principle of pattern
matching is to summarize the rules frommassive linguistic texts and to construct a constraint template
for causality extraction by using semantic features, syntactic features, and specific causal connectives
such as cause, result, and lead. Although this method is intuitive to express, it needs to construct
different forms of rule templates for various domains, which is less general and cannot balance the
accuracy and recall rate. The approach combined with pattern matching and machine learning mainly
divides the cause-effect extraction task into two sub-tasks: cause-effect pair extraction and relation
classification, in which candidate cause-effect pairs are first identified through templates and then
filtered according to syntactic or semantic features. It is more flexible than the former one but still
requires a lot of labor and time cost in feature selection, and has high requirements on the size and
quality of the corpus.
Due to the increasing forward development of the field of deep learning, attempts have begun to rely
on the powerful representational capabilities of deep neural networks for causal relationship
extraction. [4] determines whether there is a causal relationship between entities by using a
convolutional neural network (CNN) to classify the relationship of a given entity. [5] proposed a
knowledge-oriented CNN to classify events in texts causally by combining prior knowledge from a
lexical knowledge base. [6] considered that the approach of using simple word embeddings to
represent causal events ignores the inter-event context and the internal elements of the events, so the
representation of events is enriched by multi-column convolutional networks to improve the causal
event recognition performance. [7] proposed a new latent structure induction network to introduce an
external knowledge base into the causal event recognition task and alleviate the problem of
insufficient labeled data. Relationship classification methods often need to identify entities before
determining the causal relationships between entities, and this method may generate redundant and
redundant information, which affects the extraction efficiency. So, a new labeling scheme is proposed
in the literature [8], where they convert causal relationship extraction into a sequential labeling task
by using different end-to-end models on LSTM to label entities and inter-entity relationships
concurrently. [9] considered the existence of interdependent associations of individual words in a
sentence, so they enhanced the performance of causal extraction by constructing syntactic
dependency graphs and assigning different weights to each word using the graph attention network
(GAT) [10]. Although [8] used sequence annotation to accomplish the relationship extraction task for
the first time, their labeling scheme cannot address the overlapping relationships that entities may
contain among themselves in relationship extraction. Therefore, [11] designed a new tagging scheme
and devised a tag2triplet algorithm to address the case of a sentence containing multiple causal triads
and overlapping causal relations with the BiLSTM-CRF backbone using Flair embedding and the
multi-head self-attention mechanism.
From the current survey, deep neural networks already achieve better results in solving the problem
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of causality extraction. This method can keep in long-distance information cases better dig deeper
into text information. However, there are also some problems to be solved.
Firstly, the current study approach mostly simplified it as a relationship extraction problem, which
judged whether there is a causality relationship between the entities according to the given candidate
pairs in the clause, which merely classifies the relationship and cannot determine the causal direction
between their entities.
Secondly, most works limited the study of causality to a single causal effect and less exploration of
multiple causal effects in sentences. They rely on causal connectives to extract only the explicit causal
relations with marks. In addition, the scope of causality extraction is limited to intra-sentence
causality, unable to explore cross-sentence and cross-paragraph causal relationships.
Finally, there are several problems with the current approach, such as insufficient information about
semantic features, word characteristics that do not match the contextual background, and inadequate
representation of semantic features.
To alleviate the impact of the above problems, we use sequence labeling to extract causal relationships.
And we enhance the characteristic representation by adding character features, together with the
proposed BiGRU-Attention-CRF causal relationship extractor. We use Iterated Dilated
Convolutional Neural Networks (IDCNNs) [13] to extract character characteristics with transfer
embeddings and pre-trained word embeddings to enhance the feature representation. Subsequently,
we input it into the model consisting of BiGRU and attention mechanism [20] to mine the text for
deeper contextual information to capture the features in the sentence that are more important for
causality. Then we input the feature information for label classification to the conditional random
field (CRF) [21] by calculating the probability of adjacent labels to select the optimal sequence of
labels.
The principal contributions of this paper are as follows.
(1) We add character characteristics to enrich the feature representation of the input text at different
granularities and use IDCNNs to extract character characteristics to ensure retaining more features
without losing information.
(2) We propose a neural network-based relational extractor BiGRU-Attention-CRF by using gated
recurrent unit (GRU) instead of the common LSTM in sequence labeling to reduce model parameter
count and improve training speed and model extraction performance in small-scale datasets.

2. Method

Fig 2. The main structure of the causal sequence labeling model

Fig. 2 illustrates the main structure of the causal draw model for the paper. We will present the parts
of the models from top to bottom, taking the input sentenceS = {xt}n and the corresponding output
tag sequence y = {yi}n as examples, where n is the length of the S.

2.1 IDCNNs
Character-level embeddings have been shown in [26][27] to improve the performance of such tasks
relatively well. The advantage of using character-level features is that they can be extracted directly
from the source text without designing additional manual features or preprocessing the original corpus.



In previous studies, CNN is commonly used to extract character features, which has some problems.
Traditional convolutional networks obtain only a little information from the inputs after convolutional
operations. So, for capturing more contextual information, it is necessary to add more convolutional
layers, which increases network layers and parameters and leads to the overfitting risk, and repeated
pooling operations to integrate information will cause some information loss. Therefore, dilated
convolutions (DCNN) are proposed [12]. In conventional convolutional neural networks, the
convolution kernel slides in the continuous region, while the expansion convolution adds an
expansion width on this basis. During the convolution operation, the data in the middle of the
expansion width will be skipped, and a broader input matrix data will be obtained under the condition
that the size of the convolution kernel remains unchanged, thus increasing the perception field of the
convolution kernel.
Although more features are obtained by superimposing the number of expanded convolutional layers,
the corresponding increase in the number of parameters leads to problems such as convergence
difficulties and over-fitting during the actual training. Therefore, [13] proposes Iterated Dilated
Convolutional Neural Networks (IDCNNs). By using the same dilated convolution (Fig. 3) many
times, each iteration takes the last result as input, and reusing the same parameters circularly provides
a wide effective input width and desirable generalization capability.

Fig 3. DCNN architecture for recycling in IDCNNS.

We use IDCNNs to extract character features by superimposing four inflated convolutional blocks of
the same size. the structure of the convolutional blocks is shown in Fig.3, and the expansion
coefficients of DCNN within each convolutional block are α as 1,1,2. The network takes the
corresponding vector of each character as input and outputs the character features corresponding to
each word after iterations of the inflated convolution.

2.2 Contextual String Embeddings
The word embedding representations can be obtained by training neural network language models,
but the obtained embeddings are fixed embeddings that cannot characterize the multiple meanings of
words, and it would be difficult to obtain rich word embedding representations if there is insufficient
corpus data. As research advances, [14] and [15] address the performance limitations of neural
network models under corpus insufficiency by training on large unlabeled corpora to obtain pre-
trained language models containing text-rich semantic information representations.
[16] used recurrent neural networks for language modeling, modeling words, and contexts as
sequences of characters, which are used to handle some rare words and misspelled words and word
structures as prefixes and endings. And the word meanings are captured according to the context so
that the words are entangled in different embeddings in different contexts and finally pre-trained in a
large unlabeled corpus to refer to the obtained word representations as contextual string embeddings.
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Fig 4. Extract context string embedding of the word in the context of the sentence (" Washington ").

The language model is shown in Fig. 4, [16] chooses a variant of the recurrent neural network, LSTM,
as the basic architecture of the model, which consists of a forward language model and a negative
reverse language model. An individual character in a word is used as the basic unit of the model input
by using it as the basic unit, so each unit in the character sequence can be used to be trained to predict
the next word. Taking the word "Washington" as an example, the forward LSTM language model
extracts the character features of each word from left to right from the beginning of the sentence and
passes them backward, and then extracts the output hidden state hf after the last character of the
word, which contains information from the beginning of the sentence to the word. Similarly, the
reverse LSTM language model passes from back to front and outputs the hidden state hb before
extracting the first character of the word, which contains the information from the end of the clause
to the word. The two output hidden states are then concatenated to get the final context string
embedded wCharLM.

wCharLM = [hf , hf ]
i end+1 end+1

Finally, we input the contextual string embeddings, the character features, and the trained word
embeddings from [17] for stitching into the BiGRU network for further feature extraction.

2.3 BiGRU
To solve the problem that RNN is prone to gradient disappearance and gradient explosion when
dealing with long-distance dependency, [18] and [19] proposed long-short Term Memory (LSTM)
and Gated recurrent unit (GRU). Compared with the gating structure of the input gate, forgetting
gate, and output gate of LSTM, the gated loop unit GRU (Fig. 5) loses the cell state, directly uses the
hidden state Ht to transmit information, fuses the input gate and forgetting gate into update gate zt,
and changes the output gate into reset gate rt. Compared with LSTM networks, GRU structure is
relatively easy, less prone to overfitting, easier to converge with smaller data sets and requires fewer
iterations, and has the same functions as LSTM network models. Therefore, GRU has fewer
parameters and a shorter training time than LSTM with the same performance.
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Fig 5. Internal structure of gated loop unit GRU

Generally, the process of input Xt = [ri, ei, wCharLM] into the GRU unit to obtain a hidden state at
time T is as follows:

zt = σ(WzXt + UzHt–1 + bz)
rt = σ(WrXt + UrHt–1 + br)

H̃ t = tanh(WhXt + Uh(Ht–1 ⊗ rt) + bn)
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Where Wz、Wr、Wh and Uz 、 Ur 、 Uh are the weight matrix of input and hidden state at
the current time t; bz 、 br 、 bn is the bias weight; σ represents the sigmoid function; x is
Hadamardproduct.

2.4 Multi-head Self-attention
To obtain the long-distance dependence in sentences, we connect multi-directional self-attention [20]
to the tail of BiGRU, and weighted the contextual semantic features obtained by BiGRU. The
Attention mechanism is similar to that when humans observe objects, they selectively pay Attention
to some information while ignoring other information. Therefore, the Attention mechanism captures
more important features by weighting input vectors.
Specifically, H is the output of BiGRU, and the essence of Multi-head Self-attention is to project the
vector H n times to generate different Qi, Ki, Vi query, key, and value matrices. Then the different
matrices are mapped to different subspaces for attention computation separately, and the computed
results headi of different subspaces are then merged and operated to obtain the final output M by a
single linear transformation.

Qi = HWQ

Ki = HWK

Vi = HW
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Where W is the transformation matrix,Wi,j denotes the label transfer score, and yO and yn represent
the unique labels at the beginning and end of the sentence. Then the probability of label sequence y
in the case of a given sentence S is expressed as:

p(y|S) = escore(S,y)

∑y∈YS e
score(S,y)

The maximum likelihood function for the training process is as follows:
log(p(y|S)) = score(S, y) — log(∑y∈Y escore(S,y))

Where Ys denotes all potential tagged sequences of sentence S. Finally, the predicted sequence label
with the highest conditional probability to obtain:

y∗ = argmaxscore(S, y)

3. Experiments
3.1 Dataset
In this experiment, the extended SemEval 2010 Task 8 dataset was used, which contained 5,236
sentences in total, among which 1,270 sentences contained causality. The training set consists of 4450
sentences containing 157 causal triples in total. The test set consists of 804 sentences containing 296
causal triples.

Table 1. Statistics of different types of tags.
B-C I-C B-E I-E B-Emb I-Emb O

Train 1308 1421 1268 1230 55 55 66614

Test 236 229 238 230 9 16 12784

3.2 Hyperparameters
The model was built by TensorFlow 2.3, using a word vector of dimension 300 trained in the
literature[17]. The character features are obtained by uniformly distributed random initialization,
using pre-trained contextual character embeddings from the literature [16]. For IDCNNs layer
iteration block DCNN number of layers set to 3, its iteration number to 4, expansion coefficients α to
1, 1, 2. its hidden state size set to 256 in GRU, dropout set to 0.5. the number of heads set to 3 in
multi-headed self-attention, size to 8. Batch size set to 64, iteration number set to 180, learning rate
to 0.002, and use Nadam as the optimizer.

3.3 Baselines
For an adequate comparison of the effectiveness of the methods in this paper, we use several classical
causality extraction methods to compare with our approach. These methods can fall into two
categories: pipeline methods and sequence labeling methods.
Rules-Bayesian [22]:Pattern matching takes place according to the set rule template, firstly extracting
candidate causal pairs from the text, and then filtering non-causal pairs using a Bayesian classifier
and Laplace smoothing.
CausalNet [23]:The method identifies causal relationships between two arbitrary short texts by causal
strength (CS). To facilitate comparison, we then add the same causality extraction module as in [22]
to [23]. The comparison is performed by calculating the CS scores of the candidate causal triads and
a set threshold value φ. If CS(c,e) > φ, a causal relationship is considered to exist, and vice versa.
The baseline for BiLSTM based model is as follows:
BiLSTM-softmax[24]:The model has two parts, the BiLSTM encoder and the softmax classifier.
BiLSTM-CRF[25]:A classical choice of sequence annotation task, consisting of a BiLSTM encoder
and a CRF classifier.
CNN-BiLSTM-CRF[26]:A hierarchical BiLSTM-CRF model with character-level features extracted



by a character-level CNN encoder and character embeddings connected to their pre-trained word
embeddings input to the BiLSTM.
CLSTM-BiLSTM-CRF[27]:A character level embedding using a character LSTM encoder (CLSTM)
instead of CNN to learn character level embedding similar to the hierarchical BiLSTM-CRF model.
BERT-CISAN[28]:Considering the priors knowledge in different domains affects causality
extraction, the model uses BERT as an encoding layer of BiLSTM-CRF and uses the convolutional
network with pre-determined weights to extract features. It then uses a key query attention mechanism
to reduce incorrect causal candidate pairs.
The following model adds additional contextual string embedding with Multi-head Self-attention and
is baselined with the BiLSTM-CRF architecture:
BiLSTM-Attention-CRF:This model adds self-attention to the base to enhance long-range
dependencies and enriches the feature representation by adding contextual string embeddings.
CNN-BiLSTM-Attention-CRF [11]: This model adds a hierarchical structure to BiLSTM-Attention-
CRF to extract character features by character-level CNN.
PosNet[29]:Pointer labeling first constructs text features containing location information, then creates
two start and end Pointers to predict the start and end positions of causal entities in the sentence. The
obtained causal entity positions to extract the causal entities by the assembly algorithm.
To validate the performance of our causality extraction using IDCNNs to extract character features
and BiGRU-Attention-CRF, we chose to extract character features using a single CNN as a
comparison to evaluate the effectiveness of our proposed method when other experimental parameters
are consistent.
BiGRU-Attention-CRF: As with the BiLSTM-Attention-CRF structure, a simpler internal structure
and faster GRU are chosen to extract contextual features.
CNN-BiGRU-Attention-CRF: The character features used CNN to extract character features based
on BiGRU-Attention-CRF.

3.4 Experimental Results
The performance of different models on causality extraction shows in Table 2. IDCNNs-BiGRU-
Attention-CRF outperforms all other models in the test set with an F1 value of 81.06%. this proves
the effectiveness of our proposed method. It also further illustrates that for causality extraction, the
sequence labeling method outperforms the pipeline method and slightly outperforms the pointer
labeling method. And with more causal pairs in the sentence, our approach will recognize faster than
[29].

Table 2. Comparison of scores with current causality extraction methods
Models F1

CausalNet 57.61%

Rules-Bayesian 59.59%

BiLSTM-softmax 73.33%

CNN-BiLSTM-CRF 75.57%

CLSTM-BiLSTM-CRF 75.06%

BiLSTM-CRF 76.78%

BERT-CISAN 77.65%

BiLSTM-Attention-CRF 78.42%

CNN-BiLSTM-Attention-CRF 79.44%

BiGRU-Attention-CRF 79.20%

CNN-BiGRU-Attention-CRF 79.31%



PosNet 80.90%

IDCNNs-BiGRU-Attention-CRF 81.06%

In addition, as shown in Table 2, the models' performance is significantly improved by 1.84% and
2.66% after adding contextual string embedding and self-attention to the BiLSTM-CRF architecture.
That indicates that the contextualized character-level word embedding is more suitable for the
causality extraction task, and the addition of Multi-head Self-attention can effectively extract more
causal features.

Table 3. Performance scores of the model with two different methods of extracting character
features

Models P R F1

BiLSTM-Attention-CRF 76.47% 80.68% 78.42%

CNN-BiLSTM-Attention-CRF 77.98% 80.95% 79.44%

BiGRU-Attention-CRF 83.60% 75.42% 79.20%

CNN-BiGRU-Attention-CRF 82.14% 76.67% 79.31%

IDCNNs-BiGRU-Attention-CRF 81.64% 80.48% 81.06%

For further verification of the effectiveness of IDCCNs-BiGRU-Attention-CRF, we selected other
sequence labeling models to compare in detail. Also, it is seen from Table 3 that without adding
character features, the BiGRU-Attention-CRF score is 79.2%, while the BiLSTM-Attention-CRF
score is 78.42%. With the addition of a single CNN to extract character features, it is 79.31% and
79.44%, respectively. Thus, it is demonstrated that adding character features has an impact on the
performance of model extraction under a specific task. After extracting character features using
IDCNNs, the recall R of BiGRU-Attention-CRF improved by 5.06% and 3. 86%, and although the
accuracy of P decreased, F improved by 1.84% compared with no character features added and by
1.73% compared with character features extracted using CNNs, and F1 reached 81.06%. These
results indicate that compared with the character features extracted by CNN, IDCNNs can learn more
local upper and lower character features by expanding convolution without losing information, which
can make the character feature representation more complete, enrich the feature representation of
words with different granularity, and help improve the performance of causality extraction.

Table 4. Different models with the number of parameters and training time
Models Total Parameters Average time for an epoch

BiLSTM-Attention-CRF 14,232,306 18s362ms

CNN-BiLSTM-Attention-CRF 14,298,546 21s419ms

BiGRU-Attention-CRF 11,851,506 16s322ms

CNN-BiGRU-Attention-CRF 11,902,386 18s362ms

IDCNNs-BiGRU-Attention-CRF 11,935,146 18s372ms

Adding character features improves the scores of models, yet it also brings about the problem of
increasing the parametric. As Table 4 shows, compared to no additional character features, the model
reduces around 0.8M parameters and saves 3s in training an epoch, which indicates that adding
character features makes the model structure complex and takes more time for training, but the model
performance improves accordingly. Secondly, compared with different networks to extract character
characteristics, we find that using IDCNNs increases parametric by about 0.5M while the training
time remains the same. That indicates the benefit of our method while increasing parametric is



worthwhile. We compare the experimental results of BiLSTM and BiGRU models and find that both
models with GRU perform slightly better than LSTM, probably since GRU has fewer parameters than
LSTM caused by the structural difference, which makes it less dependent on the training set size and
easier to converge. Therefore, without affecting performance, BiGRU can save more time in training.

3.5 Analysis and Discussion
Table 5 shows the performance of our proposed model for identifying different labels on the SemEval
2010 Task 8 dataset. The model performs well in identifying the cause (C) and effect (E). For the
cause label (C), the P value was 89.28%, the R was 66.24%, and the F1 was 76.05%. For the result
label (E), the P value was 90.94%, the R was 62.18%, and the F1 value was 73.68%. However, for
the embedded causality (Emb) label, this model is not ideal, and the recall rate R is 8% and F1 is
only 14.81%.

Table 5. Performance scoring results of different models for different labels
Models Type P R F1

IDCNNs-BiGRU-Attention-CRF

C 0.8928 0.6624 0.7605

E 0.9094 0.6218 0.7368

Emb 1.000 0.0800 0.1481

4. Conclusion
In response to the problem of incomplete representation of lexical features in existing causality
extraction studies, we propose a causality extraction method of BiGRU-Attention-CRF with fused
character features. Different from the previous extraction of character features by single CNN, we
obtain more local information by IDCNNs with reduced information loss and combine the pre-trained
contextual string embedding and word embedding into BiGRU-Attention-CRF for sequence
annotation to complete causality extraction. The experimental results show that IDCNNs are more
favorable for extracting character features than CNN and using BiGRU-Attention-CRF achieve a
shorter training time than BiLSTM-Attention-CRF for causal relationship extraction without
affecting F1.However, owing to the small dataset size, the model's performance is limited, and the
current methodis limited to extracting intra-sentence causality, unable to achieve cross-sentence or
cross-segment causality extraction. Therefore, in future work, we will consider using the language
model to improve the performance of causality extraction by constructing question templates with
low resources. Secondly, for document-level causality extraction, we try to apply graph
convolutional networks to extract causality.
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