

Transactions on Computational and Scientific Methods | Vo. 4, No. 12, 2024 ISSN: 2998-8780 https://pspress.org/index.php/tcsm Pinnacle Science Press

# Facial Emotion Recognition Using an Enhanced Xception Network for Behavioral Analysis

#### Sofia Moreno

National Autonomous University of Mexico, Mexico sofia.moreno189@unam.mx

#### Abstract:

The rise in mental health issues such as depression and anxiety has necessitated efficient diagnostic tools. This study integrates facial recognition with psychological analysis, utilizing deep learning techniques to achieve accurate emotion recognition. An improved Xception network was developed, featuring densely connected depthwise separable convolution modules to optimize parameter usage and reduce computational demands, making it suitable for mobile applications. The model employs the FSRNet hypernetwork for facial feature extraction and multi-scale feature learning, achieving over 95% accuracy in facial emotion recognition. This approach provides a foundation for mental health prediction and diagnosis, significantly reducing the time and cost of psychological evaluations. Future research will focus on enhancing detection speed and extending functionality across platforms for broader applications in mental health analysis.

## **Keywords:**

Deep Learning Face Correction; Human Face Correction; Xception.

#### 1. Introduction

With the achievement of the battle for a well-off society in an all-round way in China, the focus of people's life has shifted from food, clothing, housing and tresure of life or study has brought people mental problems, such as depression, anxiety, bisexual affective disorder, and so on. Especially since the COVID-19, there have been more than 70 million patients with depression and 90 million patients with anxiety in the world. Professor Lu Lin, academician of the CAS Member and president of the Sixth Hospital of Peking University, said: "At present, the incidence rate of mental and psychological diseases in China has reached 17%"[1]. Therefore, it is urgent to pay attention to people's mental health.

With the development of current technosed because of its contactless, efficient and convenient features[2].

The method based on deep learning mainly uses convolution neural network to extract the characteristicinformation of the face in the image. Through the use of deep learning technology, the application of CNN algorithm to achieve the effect of face recognition has become the mainstream. More and more scholars, experts and business companies are trying to use the method of deep learning to carry out various face detection and psychological prediction.

This paper combines face recognition technology with psychology, builds a face emotion recognition model through deep learning and applying the Xception algorithm. By extracting facial feature values from the image samples of facial expressions, the recognition rate of facial emotion is more than 95%. Later, it can be used for preliminary prediction of human mental health, and then for diagnosis and treatment of human mental health, greatly reducing the cost and time of psychological diagnosis.

## 2. Face Image Preprocessing

In the process of face recognition, the subject may have involunt<sup>lum</sup>ination, blurring, scale transformation and other characteristics caused by other reasons, so it is necessary to preprocess the image [3].

## 2.1 Face Correction

The methods of face correction include five-point alignment or 68-point alignment. This paper adopts the 68-point alignment method. Compared with the other method, this method has more face key poin out our of the detected object. Its principle is to recognize the face key points. It divides the face key points into internal key points and contour key points. The internal key points include a total of 51 key points, including eyebrows, eyes, nose and mouth, and the contour key points include 17 key points. Finally, the input image is output as a set of facial feature points through affine transformation, similar transformation and other methods to achieve the effect of facial correction[4]

## 2.2 FSRNet Technology of Face Reconstruction

Face reconstruction mainly relies on FSRNet technology to restore low-resolution face to highresolution face, that is, image clarity. FSRNet network structure is divided into coarse Image Super Resolution network and fine Image Super Resolution (hereinafter referred to as SR) network. The overall structure is as follows: The first step is to build a coarse SR network to generate a coarse Image High Resolution (hereinafter referred to as HR) image. In the second step, the coarse HR image will be sent to two branches. The first branch is the fine SR encoder, which is mainly used to extract image features; The second branch is a priori information prediction network, which estimates the landmark heatmap and analytic graph. Third, the image features and prior information will be sent to a fine SR decoder to recover the HR image. The specific network structure is shown in Figure 1:

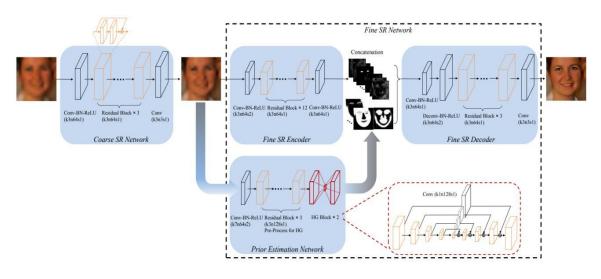



Figure 1. FSRNet Network Structure

# 3. Process and Pseudocode of Facial Emotion Recognition

## 3.1 Process of Facial Emotion Recognition

- Step 1: Import mode cv2 load\_ Model and other functions and libraries
- Step 2: Load data and image parameters
- Step 3: Start video streaming;
- Step 4: extract the feature value of portrait
- Step 5: import the eigenvalues into the model to get the emotional label
- Step 6: Disconnect the video stream
- Step 7: Export images with emotional labels

#### **3.2 Core Code Introduction**

In the process of recognition, the code for emotion recognition is written in Python language. The code flow is as follows:

Begin

Readline (Keras Callback functions, Image preprocessor ImageDataGenerator,Numpy database, sklearn database)

Use (Adam optimizer, categorical\_crossentropy loss function)

Printf Model Summary

Reader (data set file) For(i=1;

i<;i++)

{i Read the first picture

Extract the image feature value;

If feature value extraction succeeded

do brings eigenvalues into the model;

printf sentiment tags

else feature value extraction succeeded

Do brings the eigenvalues into the model;

printf sentiment tags

}

Picture=emotional label + recognition picture i

Printf picture

The implementation of the image preprocessing function above is to convert the input image data into float32 format and normalize the pixel value to 0-1. If thev2 parameter is true, the pixel value will be further converted to - 1-1. The implementation of image emotion analysis, by defining a mini XCEPTION model, is used to process images with input shapes of (48, 48, 1), in which num classes are 7 (that is, 7 different categories. The dataset labels are divided into 7 categories, namely: \* 0: 'angle', 1: 'dispute', 2: 'fear', 3: 'happy', 4: 'sad', 5: 'enterprise', 6: 'neutral'.

It first uses haarcascade\_frontalface\_The default.xml model detects the face in the image (this model is obtained from the network), and then uses fer2013\_mini\_XCEPTION.33-0.65.hdf5 model (this model is built by the program cnn.py) recognizes the emotion on the face, and finally draws the recognized emotion label on the image and saves it to images/predicted\_test\_Image.png file.

## 4. Simulation and Implementation

This paper will download FER-2013 database from a website. This database has 35887 face images in total. After applying the model, the facial emotion in the image will be recognized and simulated, as shown in Figure 2. After simulation, seven emotions, such as surprise, happiness and anger, can be identified. The recognition accuracy of the system is above 95%, as shown in Figure 3.

|       | A | B            | С        | D           | E            | F          | G         | Н             | 1          | ]            | K            | L          | M          | N         |
|-------|---|--------------|----------|-------------|--------------|------------|-----------|---------------|------------|--------------|--------------|------------|------------|-----------|
| 35858 |   | 3 PrivateTe: | 85 77 61 | 69 88 93 8  | 0 67 55 63   | 69 70 75   | 76 76 91  | 109 125 139   | 151 161 1  | 71 172 182   | 189 196 20   | 2 198 191  | 183 180 1  | 81 170 1  |
| 35859 |   | 5 PrivateTe: | 253 255  | 229 150 89  | 61 54 60 5   | 5 49 61 5  | 0 56 45 5 | 3 48 48 51 4  | 8 46 49 45 | 6 42 43 43 4 | 6 48 46 46   | 92 74 76 8 | 4 99 83 10 | 2 90 104  |
| 35860 |   | 4 PrivateTe: | 11 11 11 | 13 20 27 3  | 8 41 38 34   | 20 13 10   | 39 85 10  | 2 115 128 13  | 6 137 141  | 143 141 14   | 6 144 145 1  | 49 149 15  | 3 146 108  | 38 16 17  |
| 35861 |   | 4 PrivateTe: | 11 13 16 | 27 24 26 8  | 9 161 190    | 197 201 2  | 06 210 2  | 14 220 225 2  | 26 227 22  | 8 228 226 2  | 26 226 227   | 226 224 2  | 23 223 22  | 5 226 227 |
| 35862 |   | 3 PrivateTe: | 27 42 62 | 91 112 11   | 3 122 123 1  | 19 124 12  | 29 131 13 | 7 141 145 1   | 51 154 157 | 161 168 17   | 70 171 171   | 175 182 19 | 1 197 204  | 210 212   |
| 35863 |   | 6 PrivateTe: | 233 232  | 208 188 19  | 4 179 177    | 167 157 1  | 80 185 1  | 96 202 210 2  | 16 216 22  | 0 223 225 2  | 25 226 227   | 228 228 2  | 27 223 21  | 9 215 214 |
| 35864 |   | 2 PrivateTe: | 73 54 63 | 76 82 71 6  | 7 69 73 72   | 92 98 117  | 7 119 142 | 167 202 20    | 7 209 220  | 237 243 249  | 250 251 2    | 51 248 242 | 231 209    | 175 155 1 |
| 35865 |   | 5 PrivateTe  | 196 196  | 197 197 19  | 8 198 198    | 196 176 1  | 48 122 1  | 08 112 119 1  | 26 167 21  | 7 224 218 2  | 16 218 215   | 209 205 1  | 98 197 19  | 5 188 179 |
| 35866 |   | 4 PrivateTe: | 68 59 65 | 78 118 13   | 1 137 141 1  | 42 135 13  | 35 137 13 | 7 141 139 13  | 34 137 140 | 143 140 14   | 40 144 143   | 135 133 13 | 86 131 127 | 121 107   |
| 35867 |   | 3 PrivateTe: | 102 109  | 109 106 10  | 4 107 112    | 109 116 1  | 19 117 1  | 22 117 110 1  | 18 114 11  | 1 118 119 1  | 24 121 127   | 146 145 1  | 43 139 14  | 5 153 170 |
| 35868 |   | 6 PrivateTe: | 87 82 59 | 61 72 102   | 143 130 90   | 95 143 1   | 73 146 1: | 24 123 102 1  | 12 114 90  | 73 85 53 31  | 7 43 49 73 8 | 7 109 115  | 116 98 86  | 95 105 9  |
| 35869 |   | 3 PrivateTe: | 198 198  | 197 196 19  | 6 197 196    | 196 196 1  | 95 196 1  | 85 96 34 33 3 | 33 36 37 3 | 7 34 33 35 3 | 32 29 27 25  | 24 21 16 3 | 16 17 18 2 | 0 26 37 4 |
| 35870 |   | 2 PrivateTe: | 204 209  | 215 218 21  | 4 214 214 :  | 217 205 1  | 75 170 1  | 64 77 0 7 12  | 13 13 14 2 | 20 18 11 19  | 36 26 25 32  | 21 19 9 2  | 2 41 42 28 | 21 27 31  |
| 35871 |   | 3 PrivateTe: | 217 220  | 222 223 22  | 3 224 225 :  | 223 223 2  | 25 223 2  | 21 223 222 2  | 21 218 22  | 0 218 219 2  | 18 217 218   | 218 217 2  | 15 212 20  | 8 206 205 |
| 35872 |   | 2 PrivateTe: | 68453    | 0 48 61 70  | 76 79 98 1   | 17 130 13  | 7 143 15: | 2 156 158 16  | 4 172 172  | 168 170 17   | 1 174 179 1  | 76 176 17  | 5 173 175  | 169 163   |
| 35873 |   | 6 PrivateTe  | 112 102  | 98 89 98 13 | 33 164 185   | 180 179 :  | 185 169 1 | 76 178 156    | 166 148 97 | 93 102 104   | 103 89 88    | 79 93 80 8 | 31 107 107 | 92 83 79  |
| 35874 |   | 5 PrivateTe: | 131 159  | 90 59 10 0  | 111011       | 00225      | 791111    | 1197556       | 10 10 11   | 9798191      | 2613691      | 3 15 25 5  | 59 45 48   | 43 163 1  |
| 35875 |   | 4 PrivateTe: | 54 57 77 | 122 121 7   | 5 73 80 58 3 | 22 26 27 3 | 35 41 66  | 126 177 197   | 203 194 1  | 81 172 163   | 167 174 19   | 3 200 194  | 198 190 1  | 52 143 12 |
| 35876 |   | 5 PrivateTe: | 43 43 51 | 73 94 97 1  | 02 95 99 1   | 07 126 14  | 4 154 17: | 3 189 192 19  | 6 203 204  | 205 211 21   | 3 215 215 2  | 16 212 21  | 4 220 217  | 216 212   |
| 35877 |   | 5 PrivateTe  | 248 251  | 239 144 10  | 2 95 82 77   | 91 138 19  | 53 145 14 | 6 170 180 1   | 95 207 21: | 214 212 20   | 04 207 204   | 185 201 20 | 01 192 177 | 174 186   |
| 35878 |   | 6 PrivateTe  | 29 29 27 | 31 49 56 2  | 9 19 22 20   | 34 43 55   | 71 85 94  | 98 101 104    | 110 113 11 | 5 120 122 1  | 121 119 116  | 115 115 :  | 04 96 92   | 84 75 62  |
| 35879 |   | 6 PrivateTe  | 139 143  | 145 154 15  | 9 168 176    | 181 190 1  | 91 195 1  | 99 203 205 2  | 06 210 21  | 3 213 213 2  | 12 213 215   | 215 215 2  | 15 213 21  | 4 216 215 |
| 35880 |   | 3 PrivateTe  | 0 39 81  | 30 104 97 5 | 1 64 68 46   | 41 67 53   | 68 70 54  | 73 55 49 76   | 52 21 0 13 | 10 7 15 10   | 362025       | 971473     | 8 58 100 1 | 1 49 75 9 |
| 35881 |   | 2 PrivateTe: | 00616    | 19 31 47 1  | 3 26 19 17   | 315342     | 14 20 20  | 59 138 175    | 192 207 2  | 18 212 214   | 224 224 19   | 5 148 105  | 87 93 166  | 233 233   |
| 35882 |   | 2 PrivateTe: | 164 172  | 175 171 17  | 2 173 178    | 181 188 1  | 92 197 2  | 02 206 208 2  | 10 210 21  | 1 210 210 2  | 13 212 213   | 217 216 2  | 13 214 21  | 4 216 215 |
| 35883 |   | 0 PrivateTe: | 181 177  | 176 156 17  | 8 144 136    | 132 122 1  | 07 131 1  | 56 174 166 1  | 94 150 13  | 6 132 142 1  | 80 181 168   | 187 189 2  | 05 222 19  | 6 214 217 |
| 35884 |   | 6 PrivateTe  | 50 36 17 | 22 23 29 3  | 3 39 34 37   | 37 37 39   | 43 48 50  | 53 60 67 69   | 72 73 82 8 | 86 87 94 94  | 89 84 78 78  | 80 73 68   | 63 59 56 5 | 6 56 43 3 |
| 35885 |   | 3 PrivateTe  | 178 174  | 172 173 18  | 1 188 191    | 194 196 1  | 99 200 2  | 01 204 206 2  | 02 195 18  | 5 182 183 1  | 84 188 191   | 194 192 1  | 87 182 18  | 2 184 187 |
| 35886 |   | 0 PrivateTe  | 17 17 16 | 23 28 22 1  | 9 17 25 26   | 20 24 31   | 19 27 92  | 164 195 220   | 150 123 1  | 90 168 86 8  | 32 134 183   | 198 91 106 | 89 30 78   | 114 110   |
| 35887 |   | 3 PrivateTe  | 30 28 28 | 29 31 30 4  | 2 68 79 81   | 77 67 67   | 71 63 61  | 78 108 142    | 147 123 11 | 3 111 107 1  | 113 125 136  | 145 137    | 18 101 85  | 64 59 7:  |
| 35888 |   | 2 PrivateTe: | 19 13 14 | 12 13 16 2  | 1 33 50 57   | 71 84 97   | 108 122   | 136 145 154   | 161 170 1  | 77 176 179   | 181 188 18   | 9 181 168  | 162 161 1  | 55 137 10 |
| 35889 |   |              |          |             |              |            |           |               |            |              |              |            |            |           |

Figure 2. Part of original data

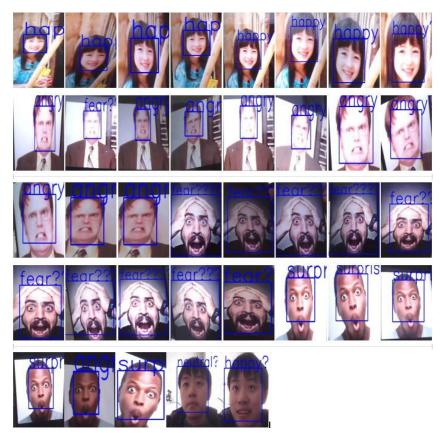



Figure 3. Partial Test Results

## 5. Conclusion

This paper proposes an emotion recognition method based on the improved Xception network. Through the dense connection of deeply separable convolution modules, it can reduce the amount of calculation parameters and make full use of model parameters, while taking into account the use of mobile terminals. The model uses the feature network extraction model for feature extraction and learning, which improves the ability of multi-scale features; Adopt FSRNet face hypernetwork model; At the same time, the Xception feature extraction network is applied to recognize the number of pictures, and the accuracy rate is more than 95%. In the future, the algorithm will be further improved to reduce the detection time. At the same time, the application on other platforms and psychological recognition and other functions will be studied to finally achieve mental health prediction, recognition

and diagnosis.

#### References

- [1] Zhao Chunxiao World Mental Health Day | The incidence rate of mental illness in China has reached 17% [EB/OL] 2022[2023/2/13]. https://city.cri.cn/20221017/d53ef121-3602-5e19-8f6c-a6f2275dcaad.html.
- [2] Zhang Yansheng, Nie Zhiyong, Sui Lilin. Face recognition in real complex mining environment based on deep learning [J]. Energy Technology, 2022,20 (05): 3-8.
- [3] Chen Jiahao, Fu Xiaofeng, Zhang Jiaming. Face pain expression recognition based on lightweight Xception network [J]. Industrial Control Computer, 2022,35 (11): 109-110.
- [4] Guo Zhongtian, Wang Ranfeng, Fu Xiang, Wei Kai, Wang Yulong. Feature extraction method of coal slime flotation foam velocity based on image feature matching [J]. Industrial and Mining Automation, 2022,48 (10): 34-39+54. DOI: 10.13272/j.issn.1671-251x.17991.
- [5] Zhou Zihao, Tian Qiuhong. Gesture recognition based on improved Xception network [J]. Software Guide, 2022,21 (06): 41-48.
- [6] Tan Yongjian, Tian Miao, Xu Dexin, Sheng Guanqun, Ma Kai, Qiu Qinjun, Pan Shengyong. Research on rock image classification and recognition based on Xception network [J]. Geographic and Geographic Information Science, 2022,38 (03): 17-22.