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Abstract: This paper studies a natural human-computer interaction system based on gesture key point
detection, aiming to achieve accurate interaction between users and virtual devices by efficiently extracting
hand key points. The system uses a deep learning model to process gesture images, extract the positions of
key points such as finger joints and palms, and convert dynamic gestures into specific instructions through
timing analysis. In the simulation experiment, users control virtual devices through gestures and complete
remote-control tasks such as light switches, robotic arm operations, and drone path planning. The
experimental results show that the system exhibits a high success rate and low latency in static tasks, but
still faces certain robustness challenges in dynamic tasks and complex scenarios. Compared with traditional
methods, the interaction method based on gesture key points is more natural and intuitive, providing new
technical support for application scenarios such as smart homes, industrial automation, and telemedicine.
Future research will focus on improving the real-time and adaptability of key point detection, combining
multimodal information to further enhance system performance, and expanding its application potential in
the fields of virtual reality and augmented reality. The research in this paper not only provides theoretical
support for human-computer interaction technology but also lays a foundation for building intelligent
control systems in practical applications.
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1. Introduction
As an important field of modern science and technology, human-computer interaction has gradually
transitioned from traditional keyboard and mouse operations to more natural and intuitive interaction
methods with the rapid development of computer vision and artificial intelligence. Among the many means of
interaction, gestures have become an important form of human-computer interaction due to their high degree
of freedom and intuitiveness [1]. Gestures are not only a natural non-verbal communication method but also
can convey user intentions through rich motion and morphological features, providing possibilities for
diverse application scenarios. From smart homes to virtual reality, from educational entertainment to
industrial control, gesture-based human-computer interaction shows a wide range of application potential [2].
In traditional human-computer interaction systems, gestures are usually implemented by sensing devices such
as data gloves and position trackers. Although these devices can accurately capture the motion state of
gestures, they require users to wear additional hardware, which imposes certain restrictions on naturalness. At
the same time, this method has high hardware costs and limited usage scenarios, and cannot be widely used in
daily life. With the development of computer vision technology, visual gesture interaction has gradually



become mainstream, and gesture recognition can be completed through cameras and algorithm analysis.
Visual gesture interaction does not require additional equipment, and the interaction method is more natural
and intuitive, but due to complex backgrounds, light changes and other problems, the accurate capture and
recognition of gestures still face technical challenges [3].
In order to achieve more efficient gesture interaction, researchers have begun to focus on the detection and
analysis of gesture key points in recent years. Gesture key points are important feature points that describe
the state of gestures, including the coordinate information of key parts such as finger joints and palm
positions. By capturing and analyzing these key points, the motion trajectory and dynamic characteristics of
gestures can be accurately restored, thereby enabling the understanding of user intentions. The detection of
gesture key points can not only simplify the expression of gestures but also avoid the processing of redundant
information and improve the interaction efficiency. In addition, the human-computer interaction method
based on key points can effectively adapt to complex backgrounds and reduce the interference of lighting
changes, providing technical guarantees for the practicality of gesture recognition.
In practical applications, human-computer interaction based on gesture key points shows strong flexibility
and adaptability. First, key point detection technology supports the accurate expression of a variety of
complex gestures. Whether it is static gestures or dynamic gestures, they can be represented by the coordinate
information of key points. Secondly, combined with deep learning models, key point data can be used to train
classifiers or generators, thereby further improving the intelligence level of the system. This method shows
significant advantages in smart device control, virtual scene operation, and remote collaboration. For example,
controlling smart TVs through gestures can get rid of the limitations of traditional remote controls; in virtual
reality, gesture key points provide a natural means of interaction for three-dimensional modeling and object
manipulation [4].
In short, human-computer interaction based on gesture key points is a natural, efficient, and promising way of
interaction. It captures the core information of hand movements and makes full use of the freedom and
flexibility of gestures, opening up new possibilities for the application scenarios of human-computer
interaction. With the continuous advancement of key point detection technology and the further optimization
of deep learning algorithms, this field will continue to promote the development of interactive technology in a
smarter and more humanized direction, providing more reliable solutions for the interactive needs in various
practical scenarios. In the future, human-computer interaction based on gesture key points will surely have a
more far-reaching impact in the fields of smart devices, industrial control, virtual reality, etc. [5].

2. Related Work
Gesture interaction based on sensor devices was the mainstream direction of early research, using hardware
devices such as data gloves and position trackers to accurately capture the motion state of gestures. This
method has the advantages of high precision and robustness, especially in specific industrial scenarios, it can
provide a stable interactive experience [6]. However, this method usually requires users to wear additional
equipment, which increases the complexity and constraints of the interaction process, and puts higher
requirements on cost and convenience. In contrast, visual gesture interaction uses cameras to directly
capture hand images, segment and recognize gestures through algorithms, without additional hardware
support, and is closer to users' natural operating habits, gradually becoming a more mainstream solution [7].

In the study of visual methods, the detection of gesture key points has been an important breakthrough in
recent years. By extracting coordinate information of key parts such as finger joints and palms, researchers
can extract the core features of gestures from complex images and reduce the interference of background
noise. Early research usually relies on traditional computer vision methods, such as edge detection or color
space segmentation, but these methods have limited adaptability to light changes and complex backgrounds.
With the introduction of deep learning, the gesture key point detection model based on convolutional neural
networks has greatly improved the accuracy and robustness of detection, while maintaining high adaptability



in a variety of environments. These advances make gesture key points the key to achieving complex
interactive tasks [8].

In addition, the motion trajectory analysis and semantic understanding of gesture key points are also
indispensable in the interaction process. By analyzing the time series of key point coordinates, the dynamic
characteristics of user gestures can be accurately restored, providing a more fine-grained semantic
understanding for the interactive system. Research in this area has been extended to more complex
application scenarios such as dynamic gesture recognition and continuous gesture semantic parsing. For
example, combined with deep learning sequence models such as long short-term memory networks (LSTM)
or temporal convolutional networks (TCN), researchers can accurately model the motion patterns of gestures
and provide the system with richer interactive capabilities. These works not only improve the efficiency and
naturalness of gesture interaction, but also provide the possibility of achieving complex tasks, such as virtual
assembly and remote control [9].

Related work shows that gesture-based human-computer interaction research has developed from static
recognition of a single gesture to complex parsing of dynamic gestures, and both system performance and
user experience have been significantly improved. Whether it is hardware support or improvements in visual
algorithms, these studies have laid a technical foundation for more natural and efficient human-computer
interaction. Future work may be more inclined to combine gesture key points with multimodal information
such as voice and facial expressions to further enhance the intelligence and diversity of human-computer
interaction.

3. Method
Building upon the foundational work of Shao et al. [10], this study employs an advanced key point
recognition algorithm to enable precise human-computer interaction through gesture-based control. Utilizing
a three-dimensional hand skeleton model, the method accurately captures and analyzes the spatial distribution
of hand joints, constructing a simplified skeletal framework that links the palm with individual finger joints.
This facilitates the representation of both dynamic and static gestures, which are subsequently translated into
machine-interpretable commands. By ensuring robust recognition accuracy and real-time responsiveness
across diverse operating environments, the approach addresses critical challenges in gesture recognition
systems. Additionally, drawing on the insights of Shao et al., the integration of multimodal technologies such
as eye tracking further augments the system's intelligence and user experience. This method demonstrates
significant potential for advancing natural and intuitive human-computer interaction in domains such as
virtual reality, augmented reality, and smart home environments, aligning with the evolving demands for
seamless and user-centric interaction technologies. The algorithm processes the hand image through a deep
learning model, extracts the position coordinates of the key points, and further parses the dynamic
characteristics of the gesture in combination with the timing information, thereby accurately capturing the
user's intention. Its network architecture is shown in Figure 1.



Figure 1. Network architecture diagram

The input of the algorithm is one or more consecutive frames of hand images, and the output is the two-
dimensional or three-dimensional coordinates of the key points. In the single-frame processing stage, the
model first preprocesses the input image, including normalization and resizing, to adapt to the input
requirements of the network. Next, the feature map is extracted through the convolutional neural network
(CNN), and the position of each key point is predicted using a heatmap. Assuming that the input image is

CWHR  , where H, W, and C represent the height, width, and number of channels of the image, respectively,
the heatmap generated by the network is KwhR  , where h and w are the height and width of the heatmap,
respectively, and K is the number of key points. The predicted position of each key point is determined by
the following formula:
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Where kp is the predicted coordinate of the k-th key point, and ),( yx represents the pixel position in the
heat map. This method detects the most likely position of the key point through the peak of the heat map.
In order to further improve the accuracy of key points, we introduced a local regression strategy based on the
heat map to refine the key point coordinates. By correcting the offset of the center of the Gaussian
distribution, the precise key point position is calculated:
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Among them, k is the refined offset of the key point prediction, which is usually obtained by regression
head output or bilinear interpolation.
To effectively capture the dynamic characteristics of gestures within continuous frames, a temporal model is
utilized to analyze the trajectories of key points over time. This methodology draws inspiration from the
adaptive interface generation framework proposed by Sun et al. [11], which highlights the integration of
reinforcement learning and intelligent feedback mechanisms to enhance Human-Computer Interaction (HCI).
By leveraging continuous adaptation and personalized adjustments, Sun et al.'s approach demonstrates the
potential of data-driven optimization to address evolving user needs. Similarly, the temporal model employed
in this study adopts a dynamic and adaptive perspective, aligning with the principles outlined by Sun et al. to
facilitate precise modeling of gesture dynamics and improve system responsiveness to user interactions.



Assuming that the coordinates of the key point at time t are ],...,,[ 21 Kt pppP  , the trajectory is encoded
through a long short-term memory network (LSTM) to generate a hidden state th :

),( 1 ttLSTMt hPfh

Among them, LSTMf is the update function of LSTM, and 1th is the hidden state of the previous moment.
By outputting the state th , we can predict the gesture category or further generate gesture semantics.

During training, we define a multi-task loss function, including the mean squared error (MSE) loss for
heatmaps and the L1 loss for regression offsets:
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Among them, *
kH and *

k are the real heat map and the real offset, and  is the loss weight
hyperparameter.
In order to ensure the robustness and accuracy of the algorithm, we introduced interference factors such as
illumination changes, rotation, and scaling to simulate real scenes in data enhancement, and adopted a mixed
precision training strategy to accelerate model convergence during training. In addition, to reduce the
interference of background noise, we integrated the attention mechanism in the network to enhance the
feature extraction ability of the hand area.
In summary, this method constructs a complete and high-precision hand key point recognition algorithm by
combining heat map prediction, local regression and time series modeling. Its multi-stage optimization and
robust design can ensure the accurate detection and semantic parsing of key points, providing a reliable
technical guarantee for gesture-based human-computer interaction.

4. Experiment
4.1 Datasets
In order to achieve human-computer interaction based on gesture key points, we use the public FreiHAND
dataset as the basis for training and evaluation. FreiHAND is a high-quality dataset focusing on hand key
point detection. It provides hand images taken in real scenes, covering a variety of gestures and rich posture
changes. The dataset contains RGB images from different perspectives and corresponding key point
annotations. The key point annotations include the three-dimensional coordinates of the finger joints and the
palm, and also provide the depth information of the hand and the related hand mesh model. These features
enable the FreiHAND dataset to provide comprehensive support for model training and ensure its
generalization ability.
The dataset contains a total of 32,560 hand images, each with 21 accurate annotations of hand key points.
The key point coordinates are in three-dimensional form, covering the joint positions of the fingers and the
center point of the palm, and each key point provides pixel coordinates, camera coordinates, and real-world
depth coordinates. This multimodal annotation method enables the model to infer three-dimensional key
points based on two-dimensional images, while supporting hand posture estimation and motion trajectory
analysis. In addition, the FreiHAND dataset also covers different hand sizes, skin colors, and lighting
conditions, which enhances the robustness and adaptability of the model.
In terms of data preprocessing and use, we performed appropriate enhancement operations on the FreiHAND
dataset, including random rotation, scaling, color jitter, and random occlusion to simulate real interference in
complex scenes. These operations not only improve the model's adaptability to a variety of environments, but
also effectively prevent the model from overfitting. In addition, the depth information provided in the dataset



also provides an important reference for the model's key point inference in three-dimensional space, allowing
the dynamic characteristics of gestures to be more accurately characterized. By using the FreiHAND dataset,
we can provide a solid foundation for the hand key point detection task, and at the same time lay a data
foundation for key point-based natural human-computer interaction research. An example of the dataset is
shown in Figure 2.

Figure 2. Dataset Example

4.2 Experimental Results
This paper first conducted a gesture control experiment. The gesture control experiment aims to verify the
application effect of the interactive system based on gesture key point detection in a real-time environment.
By using the trained model, the experiment set up a series of interactive tasks, such as grabbing, dragging,
rotating, and scaling virtual objects, to simulate daily operation scenarios. During the experiment, the user
captures the hand movements in real-time through the camera, and the system extracts the key points of the
gestures and converts them into specific control instructions for manipulating objects in the virtual scene. In
order to evaluate the performance of the system, the experiment selected gesture operation scenarios under
various background complexities and lighting conditions, focusing on testing the system's adaptability and
robustness to complex environments. The experimental results are shown in Table 1.

Table 1: Experimental results
Task Type Success Rate Average

Response
Times(ms)

Keypoint
Detection
Accuracy

Environment

Static(Object Grasp) 95 120 98 Controlled Lighting
Static(ObjectRotation) 92 150 97 Controlled Lighting
Dynamic(Object Movement) 87 183 95 Variable Lighting
Dynamic(Object Scaling) 83 207 94 Variable Lighting

The experimental results show that the success rate of static tasks is significantly higher than that of dynamic
tasks, among which the success rate of object grasping is the highest, reaching 95%, while the success rate of
object rotation is 92%. This shows that in a controlled environment, the operation process of static tasks is
relatively simple, and the system can recognize and respond to user gestures more accurately. In contrast, the
success rates of dynamic tasks such as object movement and scaling are 87% and 83% respectively. The
lower success rates may be due to the complexity of gestures and the higher requirements for system real-
time performance.
The analysis of average response time further reveals the relationship between task complexity and system
performance. The average response time of static tasks is 120ms and 150ms, which is significantly shorter
than that of dynamic tasks, indicating that the system is more efficient in processing simple single actions.
The response time of dynamic tasks is 183ms and 207ms, respectively. As the complexity of the task



increases, the response time shows a certain growth trend. This shows that in dynamic scenes, the system
needs more computing resources to process the continuous trajectory of gestures, resulting in a certain delay.
The key point detection accuracy remains high in all tasks, with the detection accuracy of static tasks being
98% and 97% respectively, and that of dynamic tasks being 95% and 94%. This shows that the system has
strong robustness in identifying key points of the hand in different scenarios. However, the accuracy of
dynamic tasks is slightly lower, which may be affected by rapid hand movements or complex backgrounds,
which suggests that the system's adaptability to continuous actions needs to be further improved in future
optimizations.
From an environmental perspective, the performance of tasks under controlled lighting conditions is better
than that under variable lighting conditions, which reflects that lighting changes have a certain impact on the
performance of the system. Static tasks perform stably under controlled lighting, while the success rate and
response time of dynamic tasks under variable lighting decrease. This shows that in complex scenes, the
interference of lighting on keypoint detection and gesture recognition cannot be ignored. Future research can
alleviate this problem by enhancing the robustness of the network model or adding data enhancement
technology. The overall results of the experiment show that the system performs well in static tasks, but there
is still room for improvement in dynamic tasks and complex environments.
Secondly, this paper conducted a remote device control experiment. The remote device control experiment
aims to verify the application potential of the interactive system based on gesture key point detection in a
simulation environment and to achieve remote operation tasks by controlling virtual devices through gestures.
During the experiment, this paper used simulation experiments to simulate the experimental results. During
the experiment, the user needs to complete a series of remote-control tasks. The experiment records the
system's response time, task success rate, and stability of key point detection, and analyzes the accuracy of
the simulation system's understanding of user instructions. The experimental results are shown in Figure 3.

Figure 3. Remote Device Control Experiment Results
From the experimental results, it can be seen that different tasks have obvious differences in response time,
task success rate, and detection stability. Among them, the virtual light control task performed best, with a
response time of only 120ms, a success rate of 95%, and a detection stability of 97%. This shows that for
simple tasks, the system can quickly recognize and execute user instructions with high reliability.
The robotic arm control task showed a moderate response time and success rate of 200ms and 88%
respectively, and a detection stability of 93%. Compared with virtual light control, the robotic arm control
task increased the demand for continuous key point trajectories, resulting in the system requiring more



computing resources, so the response time increased slightly and the success rate decreased. But overall, the
task can still be completed well. The performance of the drone path control task is the most complex, with a
response time of 250ms, a success rate of 82%, and a detection stability of 90%. This result shows that with
the increase in task complexity and dynamics, the system needs to handle more real-time trajectories and
background interference, which puts higher requirements on the detection and recognition of gesture key
points, resulting in a certain degree of performance decline.
Overall, the experimental results show that the system performs well in simple tasks, but has problems with
response delays and reduced success rates in dynamic and complex tasks. This shows that the robustness of
the system in dealing with dynamic scenes needs to be further optimized, such as by improving the real-time
performance of the model or increasing the diversity of training data to enhance adaptability. The
experimental results provide strong data support for subsequent optimization.

5. Conclusion
This paper studies an interactive system based on gesture key point detection and experimentally verifies its
application potential in simulation and control tasks. Through experimental analysis of remote device control
tasks such as virtual light control, robotic arm operation, and drone path planning, it can be seen that the
system performs well in simple tasks, achieving fast response and high success rate. However, in more
complex dynamic tasks, the system's response time and success rate decrease, indicating that there is still
room for improvement in handling complex environments and continuous gestures. The experimental results
show that human-computer interaction based on gesture key points has great application prospects, but it still
needs to be further improved in technology and practice.The current research demonstrates the core role of
gesture key point detection in human-computer interaction systems and provides a natural and efficient
solution for intelligent device control. However, the experiments also reveal the limitations of the current
system, such as insufficient robustness under complex backgrounds and diverse gesture conditions, and real-
time problems in dynamic scenes. To address these issues, future work can focus on improving the
performance of key point detection algorithms, including improving the real-time performance and noise
tolerance of the model. At the same time, gesture key points can be combined with other input methods such
as voice and eye movement through multimodal fusion technology to further enhance the interactive
capabilities of the system.At the application level of human-computer interaction, gesture-based control
systems can be widely used in fields such as smart homes, industrial automation, and telemedicine. For
example, in smart homes, users can control lights, temperature, and multimedia devices through simple
gestures; in industrial scenarios, gesture control can help operators remotely manage complex machinery and
improve work efficiency and safety; and in telemedicine, gesture-based control systems can provide doctors
with convenient virtual diagnosis and treatment tools to enhance the accuracy and flexibility of remote
operations. These application scenarios have opened up a broad application space for gesture key point
detection technology.In the future, human-computer interaction will develop in a more natural and intelligent
direction, and gesture-based interaction systems will play an important role in this process. With the
continuous advancement of deep learning and sensing technology, the accuracy and adaptability of gesture
detection will be further improved. At the same time, with the popularization of virtual reality and augmented
reality technology, the application of gesture key points will not only be limited to two-dimensional planes
but will go deep into the interactive design of three-dimensional space, bringing users a more immersive
experience. The continued development of this field will push human-computer interaction technology to a
new height and provide more comprehensive technical support for the future intelligent society.
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