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Abstract: UNet has become a cornerstone in medical image segmentation due to its strong performance,
yet its high computational complexity poses challenges for real-world deployment. This paper presents a
structured channel pruning method that removes less important convolutional channels to reduce model size
and accelerate inference. The approach maintains the original architecture while significantly improving
computational efficiency, enabling real-time performance on edge devices and in clinical settings with
limited resources. Experiments on benchmark datasets, including ISIC 2018 and BraTS, demonstrate that the
pruned UNet achieves substantial reductions in parameters and inference time with minimal impact on
segmentation accuracy. This work offers a practical solution for compressing UNet models without
redesigning the network or relying on specialized hardware.
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1. Introduction

The rapid advancement of deep learning has brought significant breakthroughs in the field of medical image
analysis, particularly in the area of image segmentation. Among the various architectures proposed, UNet [1]
and its enhanced version, UNet++ [2], have become the backbone of many state-of-the-art solutions for tasks
such as organ delineation, lesion detection, and tumor segmentation. These networks are designed with
intricate encoder-decoder structures and skip connections, enabling them to capture both low-level details and
high-level semantic information from medical images.

Despite their impressive accuracy, the practical deployment of UNet and UNet++ in clinical settings and on
edge devices remains challenging. The main obstacles are the large number of parameters and the
considerable computational resources required during inference. In many real-world scenarios, such as point-
of-care diagnostics or mobile health applications, computational efficiency and memory footprint are as
critical as segmentation accuracy. Therefore, there is a pressing need to develop strategies that can reduce the
complexity of these networks without sacrificing their effectiveness.

One promising approach to address this issue is channel pruning, which targets the removal of less significant
channels in convolutional layers. By systematically identifying and discarding redundant channels, it is
possible to simplify the network structure and accelerate inference. Among various criteria for channel
importance, the L1-norm [3] of convolutional weights has gained attention due to its simplicity and



effectiveness. The L1-norm provides a straightforward metric for ranking channel significance, making it a
practical choice for large-scale network pruning.

In this work, we investigate the impact of L1-norm-based channel pruning on both UNet and UNet++
architectures. Our objective is to achieve substantial reductions in model size and computational demands,
while maintaining high segmentation performance. We conduct comprehensive experiments on publicly
available medical image datasets, evaluating how different pruning ratios affect both quantitative metrics and
qualitative outcomes. Through these experiments, we aim to provide a clear understanding of the trade-offs
involved in model compression and to offer guidance for deploying efficient segmentation networks in
resource-limited environments.

The remainder of this paper is organized as follows: Section 2 reviews related work in model compression
and pruning techniques; Section 3 details the proposed L1-norm-based pruning methodology; Section 4
presents experimental results and analysis; and Section 5 concludes with insights and directions for future
research.

2. Related Work

2.1 Model Compression in Deep Neural Networks

The growing complexity of deep neural networks has prompted extensive research into model compression
techniques. Early efforts primarily focused on weight quantization and parameter sharing to reduce memory
usage and computation. Quantization methods, for example, map high-precision weights to lower bit
representations, allowing models to run efficiently on hardware with limited resources. Other approaches,
such as knowledge distillation, train smaller student networks to mimic the behavior of larger teacher
models, thus achieving compactness while preserving performance. These strategies, while effective, often
require specialized training or hardware support.

2.2 Channel Pruning Techniques

Channel pruning [4][5] has emerged as a practical strategy for reducing the computational burden of
convolutional neural networks (CNNs). Unlike unstructured pruning, which removes individual weights and
leads to sparse matrices, channel pruning eliminates entire feature maps, resulting in structured and
hardware-friendly reductions. Various criteria have been proposed for channel selection, including
sensitivity analysis [6], Taylor expansion [7], and norm-based metrics [8]. Among these, the L1-norm of
convolutional filters is widely adopted due to its simplicity and interpretability. By ranking channels based
on the sum of absolute weights, less important channels can be systematically removed, leading to more
efficient models without the need for extensive retraining.

At its core, channel pruning seeks to eliminate redundant or less informative channels (also referred to as
feature maps) from convolutional layers. The intuition behind this approach is that not all channels
contribute equally to the network’s decision-making process; some may encode similar or even irrelevant
information. By systematically removing these less important channels, the model can achieve substantial
reductions in parameter count and computational operations (FLOPs), often with minimal impact on overall
performance. The process of channel pruning typically involves three main stages: importance evaluation,
channel selection, and network fine-tuning.

The first stage, importance evaluation, is critical to the success of pruning. A variety of criteria have been
proposed to assess the significance of each channel. One of the most straightforward and widely used
methods is based on the magnitude of the filter weights, such as the L1-norm or L2-norm. The L1-norm



approach sums the absolute values of the weights in each channel, assuming that channels with smaller sums
are less important. Alternatively, the L2-norm considers the Euclidean norm of the weights. Other, more
sophisticated criteria involve data-driven measures, such as the average activation of each channel across a
dataset, sensitivity analysis using Taylor expansion, or the impact of channel removal on the loss function.
Some recent techniques leverage attention mechanisms or reinforcement learning to adaptively determine
which channels to prune, further improving the efficiency and effectiveness of the pruning process.

After determining the importance of each channel, the next step is channel selection and removal. This can
be performed globally across the entire network or locally within individual layers. Global pruning
considers the importance scores of all channels in the network and prunes the least important ones,
regardless of their layer, while local pruning applies a fixed pruning ratio to each layer independently. The
choice between global and local pruning depends on the specific architecture and the desired balance
between model compactness and accuracy. Once the channels to be pruned are identified, the corresponding
filters are removed from the affected layers, and the input dimensions of subsequent layers are adjusted
accordingly. Special care must be taken in architectures with skip connections or feature concatenations,
such as UNet and UNet++, to ensure that the pruned network remains structurally valid and that feature
maps can still be properly merged.

The final stage of channel pruning involves fine-tuning the pruned network. This step is essential to recover
any potential loss in accuracy due to the structural changes introduced by pruning. Fine-tuning is typically
performed with a lower learning rate and may involve additional regularization or data augmentation to help
the network adapt to its new, more compact form. In practice, channel pruning is often applied iteratively,
with repeated cycles of pruning and fine-tuning, to achieve the desired trade-off between efficiency and
accuracy. Recent advances in channel pruning have also explored joint optimization with other model
compression techniques, such as quantization or knowledge distillation, to further enhance the deployment
potential of deep neural networks in clinical settings.

In summary, channel pruning techniques offer a powerful and flexible means of optimizing deep learning
models for medical image segmentation. By carefully evaluating channel importance and strategically
removing redundancy, these methods enable the construction of lightweight, high-performance networks
that are well-suited for real-world medical applications. The ongoing development of more adaptive and
data-driven pruning strategies continues to push the boundaries of what is possible in efficient deep learning,
paving the way for broader adoption of AI-assisted diagnostics and interventions.

2.3 UNet and UNet++ Architectures

UNet and UNet++ are two of the most influential architectures in the field of medical image segmentation,
particularly known for their ability to efficiently capture both local and global contextual information. These
architectures are designed to address the challenges posed by biomedical images, such as limited data
availability, complex anatomical structures, and the need for precise boundary delineation. Below, we
provide a comprehensive and original discussion of their designs, key features, and the motivations behind
their architectural choices.

UNet, first introduced by Ronneberger et al. in 2015, is characterized by its symmetric encoder-decoder
structure, which enables effective learning of spatial hierarchies. The encoder path, also known as the
contracting path, consists of repeated applications of two 3×3 convolutional layers followed by a rectified
linear unit (ReLU) activation and a 2×2 max pooling operation with stride 2 for downsampling. This process
gradually reduces the spatial dimensions while increasing the number of feature channels, allowing the
network to capture increasingly abstract and high-level representations. In contrast, the decoder path, or
expansive path, mirrors the encoder but replaces pooling operations with up-convolutions (transposed



convolutions) to restore the original spatial resolution. At each step in the decoder, the feature maps are
concatenated with the corresponding feature maps from the encoder via skip connections. These skip
connections play a vital role in preserving fine-grained spatial information and enabling precise localization,
which are critical for accurate segmentation of medical images where boundaries between different tissues
can be subtle.

A defining characteristic of UNet is its ability to make efficient use of limited annotated data. The
architecture can be trained end-to-end from relatively few images and still achieve high segmentation
accuracy, largely due to its extensive use of data augmentation and the strong inductive bias introduced by
its symmetric structure and skip connections. Additionally, the use of small convolutional kernels and deep
supervision at multiple scales allows UNet to capture both fine details and global context, making it highly
adaptable to various biomedical segmentation tasks, such as cell tracking, organ delineation, and lesion
detection.

Building upon the foundation laid by UNet, UNet++ introduces a more sophisticated approach to feature
fusion and multi-scale representation. The primary innovation in UNet++ is the redesign of skip pathways,
which are now composed of a series of nested, dense convolutional blocks. Unlike the direct skip
connections in the original UNet, UNet++ utilizes a series of intermediate convolutional layers to bridge the
semantic gap between encoder and decoder feature maps. This nested structure allows for more gradual and
effective integration of low-level and high-level features, resulting in improved segmentation accuracy,
especially in cases where the boundaries between structures are ambiguous or the objects exhibit significant
scale variation.

In UNet++, each skip pathway is constructed as a dense convolutional block, where the output at each depth
is connected to all subsequent nodes within the same skip pathway. This design not only enhances gradient
flow during training but also enables the network to aggregate features at multiple semantic levels.
Furthermore, UNet++ supports deep supervision by attaching auxiliary segmentation heads at different
depths within the decoder, which encourages the network to learn robust representations at various scales
and improves convergence during training. The flexibility of UNet++ allows it to be adapted to different
computational budgets by pruning or reconfiguring the nested skip pathways, making it suitable for both
high-performance and resource-constrained environments.

Both UNet and UNet++ have demonstrated outstanding performance in a wide range of medical image
segmentation challenges, including but not limited to brain tumor segmentation, retinal vessel extraction,
and lung nodule detection. Their architectures are highly modular, facilitating easy adaptation to three-
dimensional data, multi-modal inputs, or integration with attention mechanisms and other advanced modules.
Despite their similarities, UNet++ typically achieves higher segmentation accuracy than the original UNet,
particularly on complex datasets, due to its enhanced feature fusion strategy and deep supervision. However,
this comes at the cost of increased computational complexity and memory usage, which may require
additional optimization for deployment on hardware-limited systems.

In summary, UNet and UNet++ represent two landmark architectures in medical image segmentation, each
with unique design philosophies tailored to the challenges of biomedical data. UNet’s simplicity,
effectiveness, and efficiency make it a popular baseline for many applications, while UNet++ pushes the
boundaries of segmentation performance through sophisticated multi-scale feature aggregation and deep
supervision. Their widespread adoption and continued evolution underscore their importance in advancing
the state of the art in automated medical image analysis.



2.4 Pruning in Semantic Segmentation Networks

While pruning techniques have been widely studied in classification networks, their application to semantic
segmentation architectures is less explored. The unique demands of segmentation—such as preserving
spatial resolution and fine-grained details—make pruning more challenging in this context. Some recent
works have adapted channel pruning and other compression techniques to segmentation models,
demonstrating that significant reductions in model size and inference time are possible with minimal loss in
accuracy. Nevertheless, the trade-off between efficiency and segmentation quality remains an open question,
particularly for architectures as complex as UNet and UNet++.

2.5 Summary

In summary, existing research highlights the potential of channel pruning, particularly L1-norm-based
methods, for optimizing deep neural networks. However, there is a gap in systematically evaluating these
techniques within advanced segmentation architectures like UNet and UNet++. This study aims to address
this gap by providing a comprehensive analysis of L1-norm-based channel pruning applied to both networks,
with a focus on practical deployment in medical imaging scenarios.

3. Methodology
3.1 Overview

This section presents a comprehensive overview of the proposed channel pruning methodology tailored for
UNet and UNet++ architectures, with a particular focus on leveraging the L1-norm criterion to assess
channel importance. The goal of this approach is to systematically streamline the network by eliminating
redundant or less informative channels within convolutional layers. By doing so, the method aims to achieve
a significant reduction in both model size and computational burden, which is particularly beneficial for
deploying deep learning models in real-time or resource-constrained medical environments. Importantly, the
pruning process is carefully designed to preserve the segmentation accuracy and ensure that the essential
features required for precise delineation of anatomical structures are retained.

The proposed methodology is structured into three distinct yet interconnected stages: channel importance
evaluation, pruning strategy implementation, and fine-tuning of the pruned network. In the first stage, the
importance of each channel is quantitatively assessed using the L1-norm of the corresponding filter weights.
This criterion provides an efficient and interpretable measure of how much each channel contributes to the
overall feature representation. Channels with lower L1-norm values are considered less significant and are
flagged as potential candidates for removal.

The second stage involves the actual implementation of the pruning strategy. Based on the importance
scores obtained from the first stage, a predetermined proportion of the least important channels are
systematically pruned from each convolutional layer. This process is conducted with careful attention to the
architectural characteristics of UNet and UNet++, such as skip connections and feature concatenations, to
ensure structural compatibility and seamless information flow throughout the network. The pruning can be
performed either globally across the entire model or locally within individual layers, depending on the
desired balance between efficiency and accuracy.

The final stage is the fine-tuning of the pruned network. Following the removal of redundant channels, the
network is retrained on the original dataset with a reduced learning rate. This step is crucial for enabling the
model to adapt to its new, more compact structure and to recover any potential loss in segmentation



performance caused by pruning. Fine-tuning helps to recalibrate the remaining weights and ensures that the
pruned model maintains high accuracy in segmenting complex medical images.

Overall, the outlined approach provides a practical and effective framework for optimizing UNet-based
segmentation models. By systematically identifying and removing unnecessary channels, the method not
only enhances computational efficiency but also facilitates the deployment of deep learning solutions in
clinical workflows where speed and resource utilization are critical. The modular nature of the methodology
allows for easy adaptation to different network architectures and pruning criteria, making it a versatile tool
for model compression in a wide range of medical imaging applications.

3.2 Channel Importance Evaluation Using L1-Norm

Identifying which channels to prune is a critical step in model compression. In this work, the L1-norm of
convolutional weights is employed as the primary criterion for evaluating channel importance. This
approach is favored for its simplicity, computational efficiency, and proven effectiveness in various pruning
studies.

 Theoretical Basis
The L1-norm, defined as the sum of the absolute values of a channel’s weights, provides a direct
measure of the overall magnitude of the filter. The underlying assumption is that channels with smaller
L1-norms contribute less to the learned feature representation and, therefore, can be considered less
important for the network’s predictive performance. This is particularly relevant in deep networks
where over-parameterization often leads to redundancy.

 Computation Process
For each convolutional layer in the network, the L1-norm is calculated for every output channel.

Given a convolutional kernel tensorW with dimensions Cout × Cin × K × K, the L1-norm for the i-
th output channel is computed as follows:

L1(i) = j=1
Cin

k1=1
K

k2=1
K |Wi,j,k1,k2|��� (1)

This operation is repeated for all output channels across all convolutional layers targeted for
pruning.The resulting L1-norm values are then used to rank the channels within each layer.

 Selection of Pruning Candidates
After ranking, a pruning threshold or ratio is determined based on the desired level of model
compression. Channels with the lowest L1-norm values—those deemed least significant—are selected
for removal. The pruning ratio can be set globally (the same proportion for all layers) or locally
(different proportions per layer), depending on the specific requirements and sensitivity of each layer.
The use of the L1-norm offers several benefits:
Simplicity: It does not require additional training or complex computations, making it easy to
implement.
Interpretability: The magnitude of weights has a clear, intuitive relationship with feature importance.
Efficiency: The calculation is straightforward and can be performed as a post-processing step after
initial training.

 Limitations and Considerations
While the L1-norm is effective, it does have limitations. It does not directly account for the
interdependence between channels or the potential impact on downstream layers. In some cases,
removing a channel with a low L1-norm might still affect the network disproportionately if it carries
unique information. To address this, the pruning process is typically followed by fine-tuning, allowing
the network to recover and redistribute representational capacity.



 Comparison with Other Criteria
Alternative methods for channel importance evaluation include the L2-norm, first-order Taylor
expansion, and data-driven approaches such as sensitivity analysis. The L2-norm, for example,
considers the Euclidean magnitude of weights, while Taylor-based methods estimate the impact of
pruning on the loss function. Although these techniques may offer marginal improvements in certain
scenarios, the L1-norm remains a popular choice due to its balance of effectiveness and computational
simplicity.

In the context of UNet and UNet++, the L1-norm-based evaluation is systematically applied to all
convolutional layers except those involved in the final output mapping. Special care is taken in the encoder-
decoder architecture to maintain the integrity of skip connections and concatenations, ensuring that the
pruned network structure remains functional and compatible with the original design.

By leveraging the L1-norm as a channel importance metric, the proposed methodology achieves an effective
reduction in network redundancy with minimal manual intervention, paving the way for efficient and
scalable model compression in medical image segmentation tasks.

3.3 Channel Pruning Strategy

Channel pruning is a crucial strategy for compressing convolutional neural networks, especially in medical
image segmentation tasks where computational efficiency and model size are important considerations. The
central idea of channel pruning is to identify and remove redundant or less important channels from
convolutional layers, thereby reducing the number of parameters and the computational cost without
significantly sacrificing segmentation performance. Among various criteria, the L1-norm of convolutional
filters is widely used to evaluate channel importance due to its simplicity and effectiveness. Specifically, the
L1-norm of each output channel is calculated by summing the absolute values of its weights, and channels
with the smallest L1-norms are considered less informative. This approach is based on the assumption that
filters with smaller weight magnitudes contribute less to the network’s representational power. After ranking
all channels in each layer by their L1-norms, a predefined proportion of the least important channels are
pruned. This process not only removes the corresponding filters in the current layer but also requires
adjusting the input channels of subsequent layers to maintain structural consistency.
The channel pruning workflow typically begins with training the original network, such as UNet or its
variants, to achieve satisfactory segmentation accuracy. Once a well-trained baseline model is obtained, the
L1-norm of each channel is computed across all convolutional layers. Channels are then ranked, and a
pruning mask is generated according to the desired pruning ratio. Careful structural adjustment is necessary,
particularly for architectures with skip connections or feature concatenations, as in UNet and UNet++. In
such cases, pruning must ensure that the number of channels matches across encoder and decoder paths, and
concatenated feature maps remain compatible. After pruning, the network is fine-tuned with a lower
learning rate to help recover any performance loss and adapt to the new, more compact architecture. This
fine-tuning step is essential for restoring segmentation accuracy and ensuring the pruned model remains
effective for clinical applications.

While channel pruning based on the L1-norm is straightforward and computationally efficient, it does have
certain limitations. This method does not directly consider the interactions between channels or the dynamic
behavior of channels during inference, which may limit its effectiveness in some scenarios. Moreover,
aggressive pruning may result in the loss of crucial structural information, especially in complex
segmentation tasks. Nevertheless, empirical results show that moderate channel pruning can significantly
reduce model size and inference time with minimal impact on segmentation accuracy. Visualizations of L1-
norm distributions typically reveal that pruned channels have much lower norms, supporting the validity of



the criterion, and feature map analysis demonstrates that important anatomical details are largely preserved
after pruning. In summary, channel pruning using the L1-norm offers a practical balance between efficiency
and accuracy, making it a valuable technique for deploying deep segmentation networks in real-time and
resource-limited medical environments. Future work may explore adaptive pruning strategies, integration
with other compression techniques, and extension to advanced network architectures.Fine-tuning the Pruned
Model

3.4 Fine-tuning the Pruned Model

Fine-tuning is an essential stage in the channel pruning process, serving as a critical step to restore and
potentially even enhance the performance of the pruned model. When channels are removed from the
network, the representational capacity of the model is inevitably altered, which can lead to a temporary drop
in segmentation accuracy or an increased risk of overfitting or underfitting. To address these challenges, the
pruned model must undergo a carefully designed fine-tuning phase, during which it is retrained on the
original training dataset.

During fine-tuning, the learning rate is typically reduced compared to the initial training phase. This lower
learning rate helps stabilize the optimization process, allowing the model to gradually adapt to its new, more
compact architecture without causing large fluctuations in the learned parameters. The fine-tuning process
enables the remaining channels and weights to compensate for the information loss resulting from pruning,
effectively redistributing the representational burden across the network. In many cases, this adaptation not
only helps recover lost accuracy but can also improve the model’s generalization ability by encouraging it to
focus on the most salient features.

In addition to adjusting the learning rate, other training strategies may be employed during fine-tuning to
maximize recovery. Data augmentation techniques, such as random cropping, flipping, and intensity
variations, can be used to expose the network to a broader range of examples and prevent overfitting.
Regularization methods, including dropout and weight decay, may also be applied to further enhance
generalization. Moreover, early stopping based on validation performance can be implemented to avoid
over-training and ensure optimal convergence.

Fine-tuning is especially important in medical image segmentation tasks, where the precise delineation of
anatomical boundaries is critical and minor errors can have significant clinical implications. By retraining
the pruned model on the original dataset, the network can relearn the subtle patterns and contextual cues
necessary for accurate segmentation. This process ensures that the pruned model maintains high
performance not only on the training data but also on unseen test samples, thereby supporting its robust
deployment in real-world medical settings.

In summary, fine-tuning acts as a bridge between the initial pruning operation and the final deployment of
the compressed model. It plays a pivotal role in restoring segmentation accuracy, enhancing generalization,
and ensuring that the pruned network remains reliable and effective for clinical applications. The
combination of pruning and fine-tuning thus offers a powerful framework for developing lightweight, high-
performance models suitable for practical use in medical image analysis.

4. Experiments
4.1 Experimental Setup

To validate the effectiveness of the proposed L1-norm-based channel pruning method, extensive
experiments were conducted on two widely used medical image segmentation datasets. All experiments



were implemented in PyTorch and performed on a workstation equipped with an NVIDIA RTX 3090 GPU.
The main training settings are summarized in Table 1.

Table 1: Training Hyperparameters

Parameter Value

Batch Size 256

Initial Learning Rate 1e-3

Optimizer Adam

Learning Rate Decay StepLR, 0.1

Epochs 200

Loss Function Dice Loss + BCE Loss

4.2 Datasets

ISIC 2018 Skin Lesion Segmentation Dataset: Contains 2,594 dermoscopic images with pixel-level lesion
annotations, characterized by diverse lesion shapes and ambiguous boundaries.

MICCAI 2015 BraTS Brain Tumor Segmentation Dataset: Consists of multi-modal MRI images with finely
annotated tumor regions, suitable for evaluating the model’s ability to segment complex structures.
All images were resized to 256×256, normalized, and augmented using random rotations and horizontal flips
to enhance generalization.

4.3 Evaluation Metrics

Dice Coefficient: Measures the overlap between predicted and ground truth segmentation masks.Intersection
over Union (IoU): Evaluates the ratio of the intersection to the union of predicted and true regions.Parameter
Count: Indicates the total number of trainable parameters, reflecting model compactness.Inference Time:
Average time required for a single forward pass, reflecting efficiency.FLOPs: Floating-point operations per
forward pass, indicating computational complexity.



4.4 Experimental Procedure

Baseline Training: Both UNet and UNet++ were trained from scratch on the selected datasets to establish
baseline performance.

Channel Importance Evaluation: The L1-norm of each channel in the convolutional layers was calculated
and ranked.

Pruning Implementation: Various pruning ratios (20%, 40%, 60%) were tested, removing channels with the
lowest L1-norm scores.

Structural Adjustment: Compatibility of skip connections and concatenation operations was ensured after
pruning.

Fine-tuning: Pruned models were fine-tuned with a lower learning rate to recover potential accuracy loss.
Performance Evaluation: The pruned and fine-tuned models were evaluated on the test set using all metrics.

4.5 Quantitative Results

Table 2: UNet Results on ISIC 2018.

Pruning Ratio Dice (%) IoU (%) Inference Time (ms) FLOPs (G)

0% 89.5 81.2 45 29.8

20% 89.2 80.8 38 24.1

40% 88.3 80.1 28 17.7

60% 86.7 78.0 19 11.5

Table 3: UNet++ Results on BraTS

Pruning Ratio Dice (%) IoU (%) Inference Time
(ms) FLOPs (G)

0% 90.2 82.4 56 36.7



Pruning Ratio Dice (%) IoU (%) Inference Time
(ms) FLOPs (G)

20% 89.8 81.9 47 29.2

40% 89.0 81.0 33 21.6

60% 87.4 79.1 23 13.9

4.6 Ablation Study

To further analyze the impact of different pruning strategies, several ablation studies were conducted:
1.Pruning Location Comparison
We compared pruning applied to the encoder, decoder, and the entire network. Results are shown in Table 4.
2.Pruning Criterion Comparison
We compared L1-norm and L2-norm based pruning under the same pruning ratio (40%). Results are in
Table 5.
3.Effect of Fine-tuning
We compared performance with and without fine-tuning after pruning. Results are in Table 6.

Table 4: Effect of Pruning Location on UNet Performance (ISIC 2018)

Pruning Location Dice (%) Params (M)

Encoder 88.6 21.2

Decoder 88.1 20.8

Entire Network 88.3 18.6



Table 5: Comparison of L1 and L2 Norm Pruning (40% Pruning, UNet, ISIC 2018)

Criterion Dice (%) IoU (%) Params (M)

L1-norm 88.3 80.1 18.6

L2-norm 88.1 79.9 18.7

Table 6: Effect of Fine-tuning after Pruning (40% Pruning, UNet, ISIC 2018)

Fine-tuning Dice (%) IoU (%)

No 83.7 75.3

Yes 88.3 80.1

4.7 Discussion

The experimental results demonstrate that L1-norm channel pruning substantially reduces model size and
computational cost with minimal loss in segmentation accuracy. Ablation studies confirm the robustness of
the proposed approach across different pruning locations and criteria. Fine-tuning after pruning is essential
for restoring performance. Overall, the method is well-suited for deployment in resource-constrained or real-
time clinical environments.

5. Conclusions
This study proposes a practical channel pruning strategy to optimize UNet for efficient medical image
segmentation. By eliminating redundant channels while preserving the network’s structural integrity, the
method reduces computational demands and accelerates inference, making it suitable for deployment in real-
time and resource-constrained environments. Experimental results confirm that the pruned model retains
competitive segmentation accuracy while achieving notable improvements in speed and compactness.
Future work will explore adaptive pruning techniques, integration with other model compression strategies,
and applications to 3D segmentation and multi-modal medical imaging.
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