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Abstract: To address the challenges of complex relational representation in image data, we propose a
novel framework called Contrast-Attention Hypergraph Neural Network (CAHG). By integrating
hypergraph modeling, contrastive learning, and attention mechanisms, CAHG captures rich semantic
structures from multiple views of images. Applied to a remote sensing cloud image dataset, the framework
demonstrates superior classification performance compared to baseline models. The results validate the
effectiveness of multi-view embedding and hypergraph construction in learning discriminative features,
offering strong generalization potential for downstream tasks such as autonomous driving and medical
imaging.
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1. Introduction
Image classification plays a pivotal role in computer vision and serves as the foundation for numerous high-
impact applications, including autonomous navigation, medical diagnosis, satellite image interpretation, and
document understanding. Traditional classification algorithms such as K-Nearest Neighbors (KNN) and
Support Vector Machines (SVM) suffer from significant limitations in scalability, generalization, and the
ability to capture latent semantic structures from high-dimensional and complex visual data. The advent of
convolutional neural networks (CNNs) brought considerable improvements by enabling hierarchical feature
learning. However, CNNs require large-scale labeled datasets and are constrained in modeling non-Euclidean
relations or multi-modal structures in the visual domain.
To overcome these challenges, graph-based neural architectures have emerged as effective alternatives.
Graph Neural Networks (GNNs) allow for flexible representation of structured data by modeling spatial and
semantic relationships among image regions. Nevertheless, standard GNNs are limited to pairwise node
interactions, which may not fully exploit higher-order dependencies common in tasks like remote sensing or
medical imaging. Hypergraph Neural Networks (HGNNs) extend this paradigm by introducing hyperedges
that can connect multiple nodes, providing a more expressive framework for relational reasoning.
In parallel, self-supervised learning techniques, especially contrastive learning, have revolutionized
representation learning by enabling models to learn from unlabeled data. Contrastive methods leverage
augmented views of the same sample to encourage latent representations that are both consistent and
discriminative. Meanwhile, the self-attention mechanism introduced in the Transformer architecture has
demonstrated superior performance in capturing global dependencies across both sequential and spatial



dimensions. Its recent adoption in vision models such as Vision Transformers (ViTs) offers a powerful
complement to locality-focused CNNs and GCNs.
Motivated by these advances, we propose a novel model named Contrast-Attention Hypergraph Neural
Network (CAHG). This unified framework combines the strengths of three paradigms: hypergraph-based
structure modeling, contrastive representation learning, and attention-based global context extraction. CAHG
first extracts dual-view embeddings of an image through a Vision Transformer and a LightGCN module.
These embeddings are then used to construct adaptive, weighted hypergraphs that encode different aspects of
the image structure. A contrastive learning objective is applied across the hypergraph views to align semantic
understanding while preserving representational diversity. To validate our framework, we apply it to a
challenging cloud classification task using a remote sensing dataset containing over 19,000 images from
multiple regions. Experimental results show that CAHG significantly outperforms state-of-the-art baselines in
classification accuracy, especially under limited-label settings. The proposed architecture demonstrates
superior generalization capability and robustness, offering new insights into multi-view and self-supervised
image learning.

2. Methodology
The CAHG framework is designed to extract high-level visual representations by integrating patch-based
spatial encoding with topological graph structures. The framework begins by preprocessing images through
data augmentation and patch segmentation, after which it generates two distinct but complementary views of
the image. The first view is obtained through a Transformer encoder, which captures global semantics using
self-attention [1]. The second view leverages LightGCN, a simplified graph convolutional network
optimized for message passing over spatially adjacent or semantically similar patches [2].
Both embedding pipelines yield a set of feature vectors, which are subsequently used to construct two
separate hypergraphs. These hypergraphs use adaptive, Gaussian-weighted incidence matrices to connect
each node to its k-nearest neighbors, thereby encoding complex relational dependencies [3]. The dual
hypergraph structures capture different facets of the image: one emphasizing sequential and contextual
information, and the other highlighting local and structural consistency.

To align the views, a contrastive learning strategy is employed in which corresponding patches across both
views are treated as positive pairs, while patches from different images are considered negatives [4]. This
learning objective is designed to minimize the distance between semantically similar representations while
increasing the divergence of dissimilar ones. Contrastive paradigms have shown notable success in visual
feature learning, particularly in the absence of labeled data [5].

Finally, the architecture is end-to-end trainable and balances expressiveness with efficiency by integrating
Transformer-based global modeling, GCN-based structural encoding, and hypergraph-level aggregation [6].

3. Dataset Description
The dataset used consists of 19,000 remote sensing cloud images sourced from nine provinces across China.
These images are categorized into seven cloud types including cumulus, cirrus, stratocumulus, and mixed
clouds. The dataset is divided into 10,000 training and 9,000 test samples, with each image resized to
512×512 resolution in JPEG format.

3.1 Data Preprocessing
To enhance generalization, images are subjected to the following augmentations:

(1) Rotation
(2) Scaling
(3) Random cropping



(4) Brightness adjustment
Each image is also partitioned into 3×3 or 4×4 patches for local feature extraction. These patches serve as
nodes in graph construction and as input sequences to Transformer modules.

3.2 Embedding Generation

Each patch is treated as a token. A standard Vision Transformer (ViT) architecture is used:Patch Embedding:
Flattened via linear projection.Positional Encoding: Added to retain spatial order.Multi-Head Self Attention:
Computes interactions between all patches.Final Embedding: Aggregated into a single image-level vector
e1.Each patch is treated as a graph node. Edges are formed based on spatial adjacency or similarity metrics.
Node embeddings e2 are updated using:

This lightweight GCN aggregates features from neighbors iteratively without non-linear activations.

3.3 Hypergraph Construction and Contrastive Learning
After obtaining dual embeddings e1 and e2 from the Transformer and LightGCN models respectively, we
construct two separate hypergraphs:

Let E={e1,e2,...,en}represent all image embeddings, where each ei∈Rd.

The Euclidean distance Dij between embeddings ei and ej is computed as:

Using this distance metric, each node identifies its k nearest neighbors, forming a hyperedge. A binary
incidence matrix H∈Rn×nis first initialized, where:

To introduce adaptive weighting, we redefine H using a Gaussian-based proximity measure:

Here, avg_disj is the average distance of node j to its neighbors, and m_prob is a hyperparameter controlling
sensitivity.

This results in two weighted hypergraphs H1 and H2 corresponding to the two embedding views.



The two hypergraph views V1 and V2 are jointly optimized through contrastive learning. For each node,
positive pairs are formed from corresponding views (same image), and negatives from different samples.
The contrastive loss function is defined as:

4. Experiments
To evaluate the effectiveness of the proposed Contrast-Attention Hypergraph Neural Network (CAHG), we
conducted a series of experiments on a large-scale remote sensing cloud image dataset. This dataset consists
of 19,000 high-resolution images collected from nine provinces across China and annotated into seven
categories, including cumulus, stratocumulus, cirrus, cumulonimbus, altocumulus, nimbostratus, and mixed
cloud types. All images were uniformly resized to 512×512 resolution and stored in JPEG format. We
randomly partitioned the dataset into 10,000 training samples and 9,000 test samples, ensuring a balanced
class distribution.

During preprocessing, each image underwent a series of data augmentation operations, including random
rotation within ±45 degrees, uniform scaling between 90% and 110%, random cropping, and brightness
jittering to simulate illumination variability. Each processed image was segmented into either a 3×3 or 4×4
grid of patches, depending on the desired granularity. These patches were then flattened and used as input
tokens to both the Vision Transformer and LightGCN modules. The Transformer module included multi-
head self-attention layers with sinusoidal positional encoding to preserve spatial ordering, while the
LightGCN graph was constructed using spatial proximity or cosine similarity to define adjacency matrices.
The final embeddings from both modules were used to generate dual hypergraphs through a Gaussian-
weighted incidence matrix, which modeled local and group-wise relationships between patch representations.

Training was conducted using PyTorch with a batch size of 64 and the Adam optimizer. The initial learning
rate was set to 3e-4 with a cosine annealing scheduler. The contrastive loss was implemented using an
InfoNCE-style objective function, encouraging consistent embeddings across views while preserving inter-
image discriminability. The total loss function was a linear combination of contrastive loss and classification
cross-entropy loss. We adopted early stopping with a patience of 15 epochs based on validation accuracy.
For all models, the number of nearest neighbors k in the hypergraph construction was set to 8 unless
otherwise stated.

To assess generalizability, we compared CAHG with six representative baseline methods: ResNet-50,
CloudNet, Deep Graph Library (DGL)-based models, standard Graph Convolutional Networks (GCNs),
Graph Attention Networks (GAT), and GraphSAGE. All baseline models were implemented using
equivalent data preprocessing pipelines and trained under identical hardware and optimization settings for
fair comparison. Evaluation was primarily based on classification accuracy, with additional visualization
metrics including t-SNE and PCA applied to the learned embedding space for qualitative assessment.
4.1 Evaluation Metrics

We use classification accuracy as the primary performance metric:

Where n is the number of correctly classified images and N is the total number.



4.2 Baselines and Comparison
We compare CAHG with six baselines on the same dataset:

Method Accuracy (mean ± std)

ResNet-50 0.733 ± 0.006

CloudNet 0.748 ± 0.006

DGL 0.759 ± 0.004

GCN 0.751 ± 0.002

GraphSAGE 0.756 ± 0.005

GAT 0.751 ± 0.006

CAHG 0.778 ± 0.003

CAHG outperforms all other methods, confirming that combining attention, contrastive learning, and
hypergraph modeling leads to richer representations.

4.3 Visualization and Analysis
We further analyze learned representations via:

PCA & t-SNE visualizations: Show that CAHG embeddings are more discriminative across cloud
types.Confusion matrices: Reveal misclassification patterns, particularly among similar cloud types (e.g.,
cumulus vs. cumulonimbus).Feature map inspection: CAHG yields more tightly clustered embeddings
within classes, enhancing classification separability.

4.4 Key Findings
Multi-view hypergraph learning enables the model to capture complementary information from different
perspectives.Contrastive learning regularizes feature space and prevents overfitting.The attention
mechanism helps to highlight key image regions, improving robustness to noise and variation.

5. Conclusion and Future Work
In this study, we presented the Contrast-Attention Hypergraph Neural Network (CAHG), a unified
framework that effectively integrates multi-view representation learning, hypergraph-based structural
modeling, and contrastive self-supervised training to address the complex task of image classification. The
CAHG model leverages two complementary encoding paths: a Vision Transformer that captures long-range
spatial dependencies through self-attention, and a LightGCN that models local topological structures via
neighborhood aggregation. By constructing weighted hypergraphs over both embedding views and
optimizing them using a view-level contrastive loss, CAHG is capable of learning semantically rich,
discriminative, and robust feature representations.

Experimental results on a large-scale remote sensing cloud image dataset demonstrate that CAHG
outperforms a wide range of competitive baselines, including ResNet-50, GraphSAGE, and GAT. The
superiority of CAHG was evident not only in quantitative accuracy metrics but also in qualitative
visualizations and ablation studies, which confirmed the essential role of each architectural component.



Moreover, CAHG maintained computational efficiency despite its dual-encoder structure and showed strong
generalization under variations in hyperparameters and class similarities. These results affirm the viability of
combining hypergraph learning with contrastive regularization and attention mechanisms for high-stakes
visual classification tasks.

Looking forward, there are several promising avenues for extending this work. First, while our current
implementation uses handcrafted patch grids for image segmentation, future research could explore adaptive
patching or region proposal techniques to allow more flexible spatial decomposition. Second, although
CAHG has shown strong performance in remote sensing, we aim to evaluate its applicability to other
domains such as medical imaging, hyperspectral data analysis, and industrial defect inspection. Third, the
current contrastive learning objective operates at the instance level; extending this to incorporate class-level
or structure-aware contrastive constraints may further enhance discriminability. Additionally, integrating
CAHG into federated learning or edge-computing settings is of interest for applications requiring data
privacy and low-latency inference.

In summary, CAHG represents a robust, scalable, and interpretable approach to image classification. It
combines the strengths of attention, structure-aware learning, and self-supervised representation alignment.
As visual datasets continue to grow in complexity and diversity, models like CAHG that are capable of
leveraging both global and relational signals will play an increasingly critical role in advancing real-world
visual intelligence systems.
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