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Abstract: This study proposes an explainable machine learning framework for credit risk assessment in
U.S. peer-to-peer lending platforms. By combining XGBoost with SHAP (SHapley Additive exPlanations),
the model delivers high predictive accuracy while providing transparent, individualized explanations that
align with regulatory requirements under the Equal Credit Opportunity Act (ECOA) and the Fair Credit
Reporting Act (FCRA). Using real LendingClub data, we demonstrate that SHAP identifies key risk factors
such as loan grade, interest rate, and debt-to-income ratio, and provides localized insights into decision
rationales. Extensive experiments show that the proposed model outperforms traditional baselines in
classification performance and explanation fidelity. Fairness evaluation reveals subgroup-level variation in
feature importance, emphasizing the need for regular bias audits. The findings underscore the feasibility of
deploying interpretable and compliant AI systems in consumer lending, offering actionable insights for
regulators, developers, and credit analysts.
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1. Introduction
With the rapid digitalization of financial services, online loan platforms have emerged as critical
intermediaries for consumer and business lending. These platforms use algorithmic models to assess
borrower risk, enabling automated decisions at scale. However, concerns regarding transparency, fairness,
and accountability have prompted a growing demand for interpretable models in credit risk scoring [1], [2].
Traditional credit scoring methods, such as logistic regression or FICO-based heuristics, offer simplicity but
often lack predictive power in the context of heterogeneous and high-dimensional borrower data. In contrast,
machine learning (ML) models—particularly tree-based ensembles and neural networks—demonstrate
superior accuracy but are frequently criticized for their opacity [3]. Regulatory pressures such as the Fair
Credit Reporting Act (FCRA) and Equal Credit Opportunity Act (ECOA) in the United States mandate not
only accurate decisions but also explainable reasoning, especially when denying credit [4].
This paper proposes a hybrid framework that integrates explainable AI (XAI) techniques with high-
performing ML models to optimize the trade-off between prediction accuracy and model interpretability in
the U.S. loan approval process. We focus on a real-world dataset from LendingClub, one of the largest peer-
to-peer (P2P) lending platforms in the United States, which includes loan application features, credit history,
and repayment status.



We leverage XGBoost as the core predictive model due to its strong performance in imbalanced financial
classification tasks [5], and apply SHAP (SHapley Additive exPlanations) to quantify and visualize
individual and global feature importance [6]. This setup allows us to retain high predictive capability while
meeting interpretability standards. Furthermore, we evaluate the framework’s fairness and robustness under
various socioeconomic subgroups.
The main contributions of this paper are summarized as follows:
We develop an end-to-end credit risk scoring pipeline using real LendingClub data, incorporating both
predictive modeling and post-hoc explainability.
We compare multiple XAI techniques and demonstrate how SHAP enhances transparency at both individual
and model-wide levels.
We quantify disparities in feature impact across demographic groups and provide policy-relevant insights on
model fairness and compliance.
We validate the framework using multiple evaluation metrics, including AUC, precision-recall, and
consistency of explanations.
The rest of the paper is organized as follows: Section II reviews related work. Section III describes the dataset
and preprocessing. Section IV presents the model architecture and explainability components. Section V
reports experimental results. Section VI discusses implications for fairness and regulation. Section VII
concludes the paper and suggests future work.

2. Related Work
Recent advances in deep learning, causal modeling, and temporal representation learning have significantly
influenced the development of interpretable machine learning systems in financial decision-making. The field
of time-series forecasting has seen substantial innovation, particularly through the integration of generative
and attention-based mechanisms. For instance, diffusion-based models have been proposed to capture
volatility and sequential patterns in financial time series, enabling enhanced performance in complex, noise-
prone environments [7]. These techniques offer foundational insight into modeling temporal dependencies in
credit risk scoring, especially in capturing repayment behaviors and risk transitions over time.
Similarly, attention-augmented recurrent networks have been successfully applied to financial forecasting
tasks, demonstrating improved long-term memory and interpretability through selective focus on relevant
time steps [8]. These ideas support the use of SHAP in our work by providing a parallel in temporal attention:
both aim to highlight important information for prediction. Moreover, LSTM and hybrid deep learning
structures, such as copula-enhanced LSTMs, have been utilized to model dependencies across asset classes
and to incorporate distributional assumptions in multivariate forecasting scenarios [9], [10]. Such
architectures provide conceptual guidance for enhancing our scoring pipeline with interpretable, multi-factor
analysis.
Beyond time-series forecasting, the domain of causal and representation learning has contributed
methodologies crucial for achieving robust and fair predictions. Variational causal representation frameworks
have been developed to disentangle latent factors in market return prediction, aiming for interpretability and
intervention-ready models [11]. Causal representation learning also plays a pivotal role in ensuring cross-
domain generalization and reducing spurious correlations—goals that align with our fairness analysis via
SHAP [12]. In addition, the study of user behavior in evolving networks using temporal graph representation
learning reveals dynamic structure in transactional environments [13], which is analogous to the evolving risk
profiles of borrowers in peer-to-peer lending platforms. These methods emphasize not just prediction but
structural understanding, which SHAP further supports through individualized explanations.
The detection of anomalies and fraud in financial systems provides another parallel line of inquiry.
Generative models for anomaly detection have been applied to high-dimensional financial transactions,



offering tools to discover rare, irregular patterns that signal financial distress or fraud [14]. Similarly, large
language model–based fusion frameworks have emerged for fraud detection, leveraging deep feature
integration across textual and numerical domains [15]. These methods underscore the importance of
multimodal integration and representation learning in complex decision systems. Graph-based learning
approaches have also been explored to identify fraudulent behavior in transaction networks, capturing
interdependencies and structural anomalies through graph embeddings [16].
Further, ensemble learning and class-balancing strategies have demonstrated effectiveness in handling
imbalanced financial datasets, such as those involving fraud detection or rare default events [17], [18]. These
approaches inform our use of SMOTE and weighted loss functions in addressing the skewed distribution of
defaulted loans. Moreover, hierarchical models that integrate multi-source data with regularization techniques
have been shown to improve fraud detection accuracy under uncertainty [19]. These frameworks not only
boost performance but also align with the regulatory emphasis on minimizing false negatives in adverse
action contexts.
Explainable AI in financial auditing and compliance has also become a prominent area of research. Models
based on BERT have been adapted for automated report generation and audit trail analysis, pushing the
boundary of explainability into textual and document-level domains [20]. Convolutional neural networks,
especially when tailored for financial text classification, offer another layer of interpretability, contributing to
a holistic understanding of model outputs in high-stakes environments [21]. While our focus is numerical,
these works reinforce the need for modular, interpretable components that can satisfy different regulatory
artifacts.
At a broader level, innovations in deep learning architectures continue to shape financial modeling strategies.
Hybrid BiLSTM-Transformer models have proven effective in detecting transactional anomalies by capturing
both local sequence structures and long-term dependencies [22]. Enhanced CNN models have also been
tailored for volatility forecasting, optimizing feature extraction for high-frequency financial signals [23].
Reinforcement learning has emerged as a promising paradigm for dynamic risk control in volatile markets,
offering policy-level adaptivity in decision-making [24]. Though not directly applied in our work, such
approaches inspire future enhancements, particularly in real-time, interactive credit systems.
Altogether, these diverse but interconnected contributions provide a strong foundation for our proposed
framework, which integrates predictive power and explainability via XGBoost and SHAP. By situating our
work at the intersection of time-series modeling, causal representation, anomaly detection, and regulatory
compliance, we demonstrate the potential for deploying interpretable, high-performing credit scoring systems
in real-world financial applications.

3. Dataset and Preprocessing
This study utilizes the publicly available dataset released by LendingClub, a leading peer-to-peer (P2P)
lending platform operating in the United States. The dataset contains over 1.3 million loan records issued
between 2007 and 2020, with detailed information on borrower profiles, loan terms, payment behavior, credit
grades, and employment status.
3.1 Data Description
Each loan record consists of over 140 features, including:
Personal information: age, employment length, annual income, home ownership
Loan metadata: loan amount, term (36 or 60 months), interest rate, installment
Credit history: FICO score range, number of delinquencies, revolving credit balance
Outcome variable: loan_status, which indicates whether the borrower defaulted



To define a binary classification task, we group loan_status into:
Good loans: "Fully Paid", "Current"
Bad loans: "Charged Off", "Late", "Default"
This binarization yields a class imbalance ratio of approximately 4:1 in favor of good loans.
3.2 Feature Selection and Engineering
We retained 28 features based on domain knowledge and prior research, excluding text fields (e.g., job title)
and post-loan attributes (e.g., recoveries) that would not be available at application time.
Numerical features were standardized using min-max scaling. Categorical features such as home_ownership
and grade were one-hot encoded. Missing values in features like annual_inc and emp_length were imputed
using median values. Records with excessive missingness (>30% features missing) were removed.
3.3 Addressing Class Imbalance
To mitigate the effect of class imbalance, we employed two strategies:
Synthetic Minority Oversampling Technique (SMOTE): We generated synthetic bad-loan samples in the
training set using the k-nearest neighbor–based SMOTE algorithm to balance class distributions.
Class-weighted loss function: During model training, the XGBoost loss function was modified to penalize
false negatives more heavily, using an inverse-frequency weighting scheme.
3.4 Data Splitting
We randomly split the cleaned dataset into 70% training, 15% validation, and 15% test sets. All
preprocessing steps were applied only to the training set, with scalers and encoders subsequently applied to
validation and test sets to avoid data leakage.

4. Model Architecture and Explainability Framework
We adopt Extreme Gradient Boosting (XGBoost) as the primary model for credit risk prediction due to its
proven performance in structured data classification tasks, particularly in the financial domain. XGBoost
builds an ensemble of additive regression trees to optimize a regularized objective, which balances model fit
and complexity. Given a dataset D ={(xi ,yi)}i= 1n ,where xi∈Rd is the feature vector and yi∈{0,1} is the
binary label indicating default, the model minimizes the following objective function:

Here, l is the binary logistic loss, fk denotes the k-th regression tree with Tk leaf nodes, γ and λ are
regularization terms, and y^i is the aggregated prediction across trees. The model incrementally adds new
trees that predict the residuals of previous iterations using gradient boosting.

While XGBoost provides high accuracy, its complexity makes interpretation difficult. To address this, we
incorporate SHapley Additive exPlanations (SHAP) as the primary post-hoc interpretability tool. SHAP
assigns each input feature a contribution value for individual predictions, grounded in cooperative game
theory. For a model f and input x, the SHAP value ϕj for feature j is computed as:



where F is the set of all features, and fS is the model trained on subset S. This quantifies the marginal
contribution of feature j across all feature subsets, ensuring local accuracy and consistency.
To benchmark SHAP’s effectiveness, we also implement LIME (Local Interpretable Model-Agnostic
Explanations), which approximates model behavior near a specific prediction by training an interpretable
surrogate (typically linear) model. However, unlike SHAP, LIME does not guarantee consistency and is
sensitive to perturbation sampling, limiting its robustness in financial applications.

Our model pipeline integrates these interpretability tools into an end-to-end evaluation framework. After
training the XGBoost model on the preprocessed LendingClub dataset, we apply SHAP to the test set to
obtain global feature importance rankings and individual-level explanations. We further segment the
population by income, home ownership, and employment status to examine heterogeneity in feature impact.
Figure 1 illustrates the full pipeline, from data input to risk prediction and SHAP-based explanation
visualization.

Figure 1. SHAP-Based Feature Importance for Credit Risk Prediction

5. Experimental Results
We evaluate the proposed framework on the cleaned LendingClub dataset using stratified 5-fold cross-
validation. The performance metrics include area under the receiver operating characteristic curve (AUC),
precision, recall, and F1-score. Table 1 summarizes the results comparing XGBoost, logistic regression, and
random forest classifiers.

Table 1: Classification Performance Comparison Across Models

Model AUC Precision Recall F1-score

XGBoost 0.893 0.754 0.622 0.682

Logistic Regression 0.832 0.698 0.579 0.633



Random Forest 0.87 0.74 0.598 0.661

XGBoost consistently outperforms the baselines, particularly in AUC and precision, confirming its suitability
for credit classification under class imbalance. SHAP is then applied to interpret the model's behavior. As
shown in Figure 1, the most influential features include grade, interest rate, debt-to-income ratio (DTI), and
annual income. The importance ranking aligns with financial intuition, where lower grades and higher
interest rates are associated with higher default risk.
In addition to global explanations, we generate individual-level SHAP force plots to audit model decisions on
specific loan applications. These visualizations help loan officers understand why a given borrower was
predicted as high risk and identify actionable factors (e.g., high DTI or short employment history).
To evaluate the robustness of explanations, we compare SHAP with LIME on 500 randomly selected test
samples. SHAP produces more stable and consistent feature attributions across runs, while LIME
explanations vary with sampling noise. Furthermore, SHAP explanations maintain local accuracy (as
measured by fidelity to the original model) over 92%, outperforming LIME by over 15 percentage points.
Finally, we conduct a subgroup analysis across three borrower segments: annual income above $100K, self-
employed borrowers, and homeowners. Figure 2 illustrates the shift in feature impact among these subgroups.
Notably, the importance of home ownership and emp length increases significantly for self-employed
individuals, indicating context-sensitive patterns that SHAP can reveal.

Figure 2. Feature Impact Variation Across Borrower Subgroups

6. Fairness and Regulatory Implications
Despite achieving strong predictive performance, automated credit scoring systems must also satisfy fairness
and compliance criteria to be viable in regulated markets such as the United States. Disparate model behavior
across sensitive attributes-such as race, gender, or income-can introduce discrimination risks and violate
federal regulations such as the Equal Credit Opportunity Act (ECOA).
In our subgroup analysis, we observe minor but consistent disparities in SHAP value distributions across
income and employment categories. For example, the feature emp_length receives significantly higher
attribution for self-employed borrowers compared to salaried applicants, potentially amplifying disadvantage
for non-traditional earners. Similarly, high-income borrowers see greater influence from annual_inc, while



low-income borrowers exhibit higher sensitivity to dti. Although these patterns are not inherently unfair, they
warrant careful documentation to avoid unintentional bias amplification.
To quantify fairness, we adopt two group fairness metrics: equal opportunity (true positive rates across
groups) and predictive parity (positive predictive values). Results on the test set indicate that the true positive
rate for high-income borrowers is 7.2% higher than for low-income counterparts, while predictive parity
varies by only 3.6%. While this suggests a mild disparate impact, the gap remains within tolerance under
many regulatory interpretations .
Moreover, the SHAP explanations fulfill the adverse action notice requirements outlined in the CFPB
Circular 2022-03, as they allow identification of specific, model-based reasons for credit denial. We generate
personalized SHAP reports for rejected borrowers, which list the top three risk-contributing features along
with numerical justifications (e.g., “Debt-to-Income Ratio +0.091 risk contribution”). This transparency
directly supports compliance with FCRA’s obligation to provide a meaningful explanation for unfavorable
decisions.
Nonetheless, the deployment of such AI systems should be accompanied by ongoing fairness audits,
stakeholder reviews, and compliance reporting pipelines. Regulatory sandboxes proposed by the CFPB and
other agencies may serve as a testbed for such practices. Future systems may also incorporate causal
inference or counterfactual reasoning to enhance accountability beyond associative explanations.

7. Conclusion and Future Work
This paper presents an explainable AI framework for credit risk scoring on U.S.-based loan platforms,
integrating XGBoost with SHAP-based post-hoc explanations. Using real LendingClub data, we demonstrate
that high predictive accuracy can coexist with regulatory-grade transparency and fairness. SHAP allows the
attribution of individual predictions to concrete financial features, enhancing both user trust and compliance
with laws such as ECOA and FCRA.
We show that grade, interest rate, and dti are the most influential predictors, while subgroup analysis reveals
heterogeneity in feature impact based on income and employment status. Furthermore, SHAP explanations
outperform LIME in fidelity and stability, and provide structured outputs suitable for adverse action notices.
However, several limitations remain. First, while SHAP enhances interpretability, it is fundamentally
associative and does not capture causal relationships. Second, fairness metrics remain imperfect proxies for
bias; a deeper analysis of systemic inequality may be needed. Third, real-time deployment requires further
engineering effort to ensure consistency, latency, and robustness.
Future work will explore integrating causal explainability frameworks, training on multi-source credit
datasets (e.g., Fannie Mae, Prosper), and assessing long-term borrower outcomes in response to interpretable
feedback. We also plan to implement a full-stack web-based dashboard that renders SHAP values for loan
officers, enhancing decision accountability in production.
By demonstrating the synergy between predictive performance and explainability, our work contributes a
practical, regulation-aware blueprint for deploying trustworthy machine learning systems in consumer
finance.
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