
Transactions on Computational and Scientific Methods | Vo. 5, No. 8, 2025
ISSN: 2998-8780
https://pspress.org/index.php/tcsm
Pinnacle Science Press

AI-Driven Multi-Agent Scheduling and Service Quality
Optimization in Microservice Systems
Renhan Zhang
University of Michigan, Ann Arbor, USA
hellorenhan@gmail.com

Abstract: This paper addresses key challenges in microservice systems, including the difficulty of
scheduling strategies adapting to complex dynamic environments, low resource utilization, and insufficient
service quality assurance mechanisms. It proposes an intelligent scheduling and service quality optimization
algorithm based on a multi-agent framework. In this method, microservice nodes are modeled as
autonomous agents. Through collaborative learning and policy communication among agents, the system
achieves a distributed perception of resource states and joint decision-making. The algorithm integrates
Markov decision process modeling, policy gradient optimization, and composite reward function design.
The scheduling actions cover three types of behaviors: scale-out, scale-in, and maintain. The method also
considers multiple objective metrics, including task response latency, resource cost, and service completion
rate. In the training process, a centralized training and distributed execution architecture is adopted. This
enhances generalization in high-dimensional state spaces and improves policy stability. The method is
evaluated through experiments involving various factors such as hyperparameters, data scale, observation
dimensions, and environmental disturbances. These experiments comprehensively assess the adaptability
and scheduling performance of the proposed approach in different typical scenarios. The results show that
the method outperforms mainstream baselines in scheduling efficiency, service success rate, and resource
utilization. It demonstrates strong robustness and overall performance advantages, effectively supporting the
stable operation of microservice systems under high load and heterogeneous environments.

Keywords: Microservice system, multi-agent scheduling, reinforcement learning, service quality
assurance

1. Introduction
With the rapid advancement of cloud computing and containerization technologies, microservice architecture
has become the mainstream paradigm for building large-scale complex applications[1]. Compared to
traditional monolithic systems, microservices decompose applications into several independent service
modules, demonstrating significant advantages in deployment flexibility, resource isolation, and elastic
scalability. However, the high autonomy and dynamic interactions among service components in
microservice systems also introduce challenges in resource scheduling, load balancing, and service quality
assurance. Especially in scenarios with concurrent service execution, frequent load surges, and complex
service dependencies, achieving efficient resource utilization while maintaining service response quality has
become a critical and difficult research issue[2].

Traditional scheduling strategies mostly rely on static rules or centralized control mechanisms, which are
often inadequate for adapting to dynamic environments and heterogeneous resources. These methods
typically suffer from delayed responses, poor adaptability, and local optima. When facing non-stationary
workloads, sudden traffic bursts, or coordinated service requests, their scheduling efficiency and service
quality cannot be guaranteed. Moreover, as system scale grows and service coupling intensifies, centralized
scheduling approaches encounter bottlenecks in both overhead and scalability. Therefore, there is an urgent
need for an intelligent scheduling framework that supports efficient collaboration, dynamic adaptation, and
good scalability to meet the operational demands of microservices under complex conditions[3].
In recent years, multi-agent systems have emerged as a promising solution for intelligent control in complex
systems due to their distributed nature, autonomy, and collaborative learning capabilities. In microservice
environments, each service can be modeled as an agent capable of making independent decisions based on
local information. Through communication and collaboration among agents, global scheduling optimization
can be achieved. This paradigm significantly improves system responsiveness and flexibility while achieving
a better trade-off between service quality and resource overhead. In addition, the online learning mechanism
of multi-agent systems provides a feasible path for long-term performance optimization in dynamic
environments[4].
Service quality assurance is a core objective in microservice operations. It covers multiple dimensions,
including response time, availability, stability, and consistency. Within a multi-agent framework, the dynamic
perception of service quality and the corresponding feedback mechanism are especially important. Agents
must be able to evaluate service performance based on the current system state and historical experience, and
autonomously adjust their strategies. This is necessary to address real-world challenges such as complex
service dependencies and intense resource competition. Furthermore, designing effective coordination
mechanisms among agents for multi-objective scheduling and conflict resolution is essential for the practical
deployment of such methods[5].
In conclusion, research on intelligent scheduling and service quality assurance in microservices based on
multi-agent mechanisms holds significant theoretical and practical value. On one hand, this approach can
overcome the limitations of traditional scheduling algorithms in adaptability, scalability, and real-time
performance, providing a more intelligent and adaptive operation model for complex microservice systems.
On the other hand, its potential in efficient resource utilization and service quality enhancement contributes to
improving cloud platform performance, reducing energy consumption, and strengthening system robustness.
Therefore, exploring multi-agent mechanisms for scheduling and quality assurance in microservices aligns
with current technological trends and offers strong support for future system optimization in related fields.

2. Relevant Literature
Research on scheduling and service quality assurance in microservice systems mainly focuses on three
directions: static rule-based strategies, centralized optimization models, and intelligent scheduling algorithms.
Early approaches were typically based on fixed load balancing rules and predefined resource thresholds,
implementing simple scheduling through preset scaling policies. These methods can be effective in systems
with stable loads or simple structures. However, they often lack flexibility and real-time responsiveness in
highly dynamic microservice environments, making it difficult to meet the demands of modern applications
for high concurrency, low latency, and high reliability. Moreover, static strategies show limited performance
in scenarios involving service collaboration and resource sharing, making it hard to achieve global
optimization of system-wide resource allocation[6].
Centralized optimization models attempt to globally plan resource and task allocation based on full system
information. These models often employ heuristic algorithms, linear programming, or constraint-based
optimization to build global resource usage models. Such methods can achieve better scheduling quality in
theory by considering system-wide load conditions and resource constraints. However, in practical
deployment, centralized models face challenges such as high information collection costs, computational

complexity, and delayed responses. These limitations are particularly significant as microservice systems
grow in complexity and scale. Furthermore, due to the single-point nature of centralized decision-making,
such models lack robustness in the face of uncertainties like network delays and service failures in distributed
environments[7].
In recent years, intelligent scheduling strategies have attracted growing attention. These approaches leverage
reinforcement learning, evolutionary algorithms, and deep learning to build adaptive scheduling systems.
They can optimize scheduling policies through interactive learning in unknown environments and exhibit
strong generalization and adaptability. Some studies attempt to construct scheduling policy models based on
state-action mappings, allowing the system to continuously optimize resource allocation and response
strategies in dynamic environments. However, most of these intelligent methods still rely on single-agent or
centralized control frameworks. They often overlook the independence and concurrency of service
components in microservice systems, limiting the ability to utilize local decision-making at individual nodes.
In scenarios with high service collaboration and noticeable communication delays, single-agent architectures
struggle to meet the real-time and scalability requirements of complex scheduling tasks[8].
To address these limitations, research on multi-agent-based scheduling optimization has emerged in recent
years. These methods emphasize the construction of autonomous decision-making mechanisms and
collaborative feedback structures among services in distributed environments. Through communication and
policy coordination among agents, global scheduling performance can be dynamically optimized. The
introduction of multi-agent systems not only improves system responsiveness and fault tolerance but also
provides new solutions for service quality perception, autonomous load adjustment, and multi-objective
optimization. Compared with traditional centralized or single-agent methods, the multi-agent framework is
more aligned with the intrinsic characteristics of microservice systems. It offers natural distributed
adaptability and strong scalability potential, laying the foundation for intelligent scheduling and service
assurance in large-scale microservice environments.

3. Method Overview
This study proposes a microservice intelligent scheduling and service quality assurance algorithm
framework based on a multi-agent system, modeling the microservice system as a multi-agent collaborative
decision-making process in a heterogeneous distributed environment. Its model architecture is shown in
Figure 1.

Figure 1. Framework of Multi-Agent Reinforcement Learning for Microservice Scheduling

In this framework, each service node is regarded as an agent ia , which can autonomously perceive local
states, independently decide actions, and communicate with other agents. The entire system can be
represented as a multi-agent Markov decision process (Multi-Agent MDP), defined by a five-tuple

),,,,(RPAS , where S is the state space, A is the action space, P is the state transition probability, R is the
reward function, and  is the discount factor. During the scheduling process, each agent perceives the state

Ss it  at time step t, selects an action Aa it  , and obtains a local reward F under environmental feedback.

In order to model the scheduling behavior in the microservice system, this paper defines the action space to
include three core operations: scale-out, scale-in, and maintain. The execution of each action will affect the
system resource configuration and service quality indicators. In the state space construction, the current CPU
usage, memory consumption, request queue length, service dependency topology information, and other
characteristics of the service are considered to form a multi-dimensional state vector],,,[i

t
i
t

i
t

i
t

i
t dqmus  . The

state transition function is defined as:

),,Pr(),|(11
i
t

i
t

i
t

i
t

i
t

i
t asgivensassP  

This function reflects the distribution of changes in the local state of the microservice node after executing
the scheduling action, which further affects the subsequent policy adjustments.
To guide the scheduling strategy to converge to the direction of high resource utilization and optimal service
quality, a composite reward function is designed, including resource cost, response delay, and service success
rate, which is specifically defined as:

i
t

i
t

i
t

i
t slcr  

i
tc represents the resource usage cost, i

tl represents the average request delay, i
ts represents the service

completion rate indicator, and  ,, is an adjustable weight coefficient used to balance the impact of
different objectives.
In terms of policy optimization, a policy gradient-based method is used to update the policy network of each
agent. Each agent outputs the probability of selecting an action i

ta in a state i
ts through a policy function

)|(i
t

i
t

i sa , and parameter updates are based on the gradient ascent of the expected cumulative return:

])|(log[)(i
t

i
t

i
t RsaEJ   

Where  


T

tk
i
k

tki
t rR  is the future discounted return. To improve the stability and learning efficiency of

the strategy, the algorithm introduces a centralized training and distributed execution framework, combined
with the value function)(i

t
i sV to assist in optimization:

]))([()(2i
t

i
t

i
s RsVEL i
t

 

During the overall training process, each intelligent agent continuously optimizes the strategy network
through local state perception and a collaborative feedback mechanism, so that the system scheduling process
can achieve dual optimization of resource allocation and service quality in a dynamic environment, and build
a microservice intelligent scheduling mechanism with high scalability and adaptability.

4. Experimental Dataset
This study uses the Alibaba Cluster Trace 2018 as the data foundation for microservice scheduling tasks. The
dataset is collected from a real-world online cloud computing platform. It includes resource usage, scheduling

strategies, service topology, and failure information of large-scale containerized services in production
environments. The dataset holds strong practical relevance and application value. It covers millions of task
scheduling records, including key metrics such as CPU utilization, memory usage, scheduling time, and
execution duration. These features reflect the dynamic load characteristics and resource state evolution in
microservice operations.
Service instances in the dataset exhibit clear topological dependencies and temporal behavior. This supports
the modeling needs of local state awareness and collaborative decision-making in multi-agent frameworks.
The task lifecycle data includes submission, scheduling, execution, and completion stages. This information
helps evaluate the effectiveness of scheduling strategies from both resource behavior and service response
perspectives. In addition, the scheduling outcome labels in the dataset can be used to construct reward
functions for agents. These functions guide the policy network to optimize overall system performance.
The dataset includes various resource usage scenarios, such as load balancing, peak scheduling, and failure
recovery. These patterns offer good generalization capability and sufficient testing complexity. Under a
multi-agent learning framework, this dataset enables detailed modeling and analysis of service dynamics in
complex environments. It provides an ideal foundation for validating the performance and robustness of
microservice scheduling algorithms.

5. Results and Analysis
In the experimental results section, the relevant results of the comparative test are first given, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Average Task Delay Scheduling Success Rate Resource Utilization

A3C-MS[9] 120.4 95.8 84.6

DRL4HFC[10] 135.7 93.2 81.4

MAFS-CTN[11] 142.1 91.5 79.8

MASITO[12] 138.9 92.4 80.2

ESFEC[13] 150.3 89.1 76.7

Ours 108.6 97.3 88.1

As shown in the table, the proposed method achieves the best performance in average task latency, reaching
only 108.6 milliseconds. This is significantly lower than all baseline methods. The result indicates that the
introduction of a multi-agent coordination mechanism effectively improves response efficiency in
microservice scheduling. The system is able to make rapid resource allocation decisions under high
concurrency and dynamic load conditions. This avoids task queuing and waiting time caused by centralized
scheduling or delayed strategies in traditional methods.
In terms of task scheduling success rate, the proposed method also achieves the highest value, reaching
97.3%, outperforming all public benchmarks. This advantage reflects the model's ability to handle task
dependencies and fault tolerance through joint policies among agents. It remains effective even under
conditions such as complex service topologies, limited resources, or partial node failures. This demonstrates
the stability and robustness of the proposed scheduling strategy.

Regarding resource utilization, the model achieves 88.1%, which is better than other approaches. This shows
that the strategy not only ensures service quality but also emphasizes efficient resource allocation. Through
communication among agents and local state awareness, the system can dynamically detect resource idleness
and hotspot distributions. This enables fine-grained scheduling of key resources like CPU and memory,
improving overall platform efficiency and reducing resource waste.
Considering all three metrics, the proposed method achieves a better balance between scheduling
performance and service assurance. It ensures low latency and high task success rates while improving
resource usage. These results verify the feasibility and effectiveness of applying multi-agent mechanisms to
microservice scheduling. The method is especially suitable for cloud-native environments with frequent
service calls, large-scale deployments, and significant load fluctuations. It provides strong support for
deploying intelligent scheduling algorithms in real systems.
This paper further gives the impact of different numbers of agents on scheduling performance, and the
experimental results are shown in Figure 2.

Figure 2. The impact of different numbers of agents on scheduling performance
The results in the figure show that as the number of agents increases, the average task latency consistently
decreases. In particular, when the number of agents increases from 2 to 8, the system response time drops
significantly. This indicates that introducing more autonomous decision-making nodes in a multi-agent
framework enhances the system's ability to handle scheduling tasks concurrently. It helps reduce task queuing
and resource contention, leading to faster response and task completion times.
In terms of scheduling success rate, the system performs well across different agent numbers. When the
number of agents reaches 6 or more, the success rate saturates and remains above 97%. This suggests that
once the agents sufficiently cover key service nodes and load hotspots, the system can complete scheduling
processes more reliably. It avoids failures caused by delayed information or centralized load, showing that the
coordination among agents plays an effective role in maintaining service reliability.
Resource utilization also increases steadily with the number of agents. It reaches a relatively stable and high
level when the number of agents is 8 or 10. This implies that with multi-agent perception and coordinated
strategies, the system can identify and allocate idle resources more effectively. Scheduling becomes more
fine-grained and dynamic, which improves overall resource efficiency and reduces waste caused by static
strategies or underutilization.
In summary, the experiment confirms the critical impact of agent number on scheduling performance. It
further validates the advantages of multi-agent mechanisms in improving scheduling efficiency, ensuring
service quality, and optimizing resource allocation in microservice systems. It also highlights the need to
balance agent scale with operational cost during system deployment to achieve optimal configuration.

This paper also gives the impact of changes in the discount factor on the stability of the strategy, and the
experimental results are shown in Figure 3.

Figure 3. The impact of discount factor changes on strategy stability
The results in the figure show that when the discount factor increases from 0.80 to 0.95, the variance in
model return decreases significantly. The policy convergence becomes more stable. This indicates that a
higher discount factor helps the model focus more on long-term rewards. It reduces the impact of short-term
fluctuations on policy updates. This is especially important in microservice systems, where the effect of
scheduling decisions is often delayed. The policy needs the ability to evaluate long-term resource returns.
For policy entropy, as the discount factor increases, the entropy first rises and then falls. It peaks at γ = 0.90,
indicating the strongest level of exploration at this setting. Moderate policy entropy suggests that the model
achieves a balance between exploration and exploitation in the state-action space. This helps the model
discover better scheduling strategies. However, an overly high discount factor may lead to conservative
behavior. The entropy drops, and the model explores fewer new strategies, which can reduce policy diversity.
The results of the success rate fluctuation show that as the discount factor increases, the stability of the
scheduling success rate improves. The fluctuation range drops from 0.07 to 0.03. This means that under long-
term planning, the system can maintain more consistent service quality. This trend confirms the effect of high
discount factors in enhancing policy robustness in reinforcement learning. It supports consistent and
controllable scheduling outputs in dynamic microservice environments.
This paper also gives the impact of changes in the scale of training data on the generalization ability of the
strategy, and the experimental results are shown in Figure 4.

Figure 4. The impact of changes in training data size on policy generalization ability

The results in the figure show that as the training data size increases, the model's generalization performance
on the test set improves steadily. When the data size grows from 10% to 70%, the normalized policy score
rises from 0.61 to 0.79. This indicates that sufficient training data helps the model learn the deep relationship
between service states and scheduling behavior. As a result, the policy performs better on unseen samples.
This trend confirms the sensitivity of reinforcement learning methods to training coverage in complex
microservice environments.
When the training data reaches 90% and 100%, the performance gain becomes marginal, with only slight
improvement. This suggests that once the main structure of the system's state space is well covered, the
marginal learning capacity of the policy begins to decline, and the model approaches convergence. Although
additional data may refine the policy further, the overall contribution to generalization becomes limited. This
indicates that training data and computation cost should be balanced according to available resources.
The figure also shows that even with small data volumes, such as 10% or 30%, the policy still achieves
reasonable test performance. This suggests that the proposed method has a certain level of data robustness.
Such robustness is important for real-world deployment, where data collection is limited and task distribution
is uneven. It increases the applicability and practicality of the model in real microservice systems.
In conclusion, the experiment effectively validates the generalization ability of the proposed multi-agent
scheduling strategy under different training data conditions. The sensitivity analysis of training size reveals
the performance growth pattern of the policy. It also provides guidance for system designers to configure
training schemes under data scarcity and resource constraints. This highlights the scalability of the model in
complex and dynamic environments.
This paper also gives the impact of changes in state observation dimensions on strategy performance, and the
experimental results are shown in Figure 5.

Figure 5. The impact of changes in state observation dimensions on policy performance
The results in the figure show that as the dimensionality of state observation increases, the policy
performance improves significantly in the early stages. In particular, when the dimension increases from 4 to
12, the normalized policy score continues to rise. This reflects the positive impact of richer state information
on policy learning. In multi-agent microservice scheduling tasks, appropriately expanding the state input
dimension helps the model perceive service resource status, queue conditions, and dependencies more
comprehensively. This leads to the generation of more fine-grained scheduling strategies.
When the observation dimension reaches 16, the policy performance peaks. This suggests that the model
captures sufficient key information within this range and establishes a stable mapping to service behavior.

However, when the dimension increases further to 20 and 24, the performance slightly declines. This may
result from the introduction of redundant or irrelevant features, which weaken the model's generalization
ability and may even cause overfitting. This trend suggests that state representation should focus on
information density rather than blindly increasing dimensions.
The figure also shows that higher-dimensional states do not always produce better policies. In microservice
systems, where states change frequently and have complex structures, exceeding the model's capacity or
lacking sufficient training data to cover high-dimensional space may lead to convergence difficulties and
policy instability. Therefore, choosing an appropriate observation range is critical for ensuring policy stability
and effective scheduling.

6. Conclusion
This study addresses key challenges in microservice systems, including the complexity of scheduling strategy
design, low resource utilization, and difficulty in ensuring service quality. It proposes an intelligent
scheduling and service quality assurance framework based on a multi-agent approach. By abstracting
microservice components as autonomous agents, the method preserves service dependencies and resource
coupling while introducing distributed perception and collaborative decision-making. This enables dynamic
optimization of scheduling behavior and flexible adjustment of resource allocation strategies. The algorithm
is designed with microservice-specific characteristics in state modeling, action selection, and reward shaping.
It integrates long-term objectives with local feedback to enhance overall scheduling efficiency and service
stability.
The overall design emphasizes the importance of communication among agents and joint learning strategies.
It overcomes the limitations of traditional centralized scheduling in response latency and scalability. The
policy training follows a centralized training and distributed execution paradigm. This improves
generalization in high-dimensional state spaces and increases flexibility in policy transfer and deployment.
Experimental results show that the proposed method performs well across key metrics. It demonstrates strong
robustness and service assurance under complex topologies, sudden load surges, and heterogeneous resources.
This research provides theoretical support and algorithmic foundation for intelligent and automated resource
management in microservice systems. Building a scheduling system based on reinforcement learning and
multi-agent collaboration, it offers a transferable technical path for real-time resource scheduling in cloud-
native platforms, edge computing clusters, and elastic container environments. In particular, as service scale
expands and dependencies become more complex, the proposed method shows high adaptability, efficiency,
and robustness. These features contribute to improved automation and intelligent decision-making in system
operations.

7. Future Work
Future research may further explore heterogeneous learning mechanisms, adaptive communication strategies,
and distributed value aggregation methods in multi-agent systems. These advancements aim to handle more
complex and rapidly changing service environments. In addition, integrating online learning and meta-
learning techniques may enhance learning efficiency and deployment generality in scenarios with limited
data and frequent task transfer. The proposed framework also has the potential to integrate with container
orchestration systems and edge scheduling engines, offering important support for intelligent management of
large-scale cloud infrastructure.

References
[1] Liu Z, Yu H, Fan G, et al. Reliability modelling and optimization for microservice‐based cloud application using

multi‐agent system[J]. IET Communications, 2022, 16(10): 1182-1199.

[2] Belhadi A, Djenouri Y, Srivastava G, et al. Reinforcement learning multi-agent system for faults diagnosis of
mircoservices in industrial settings[J]. Computer Communications, 2021, 177: 213-219.

[3] Alves P, Gomes D, Rodrigues C, et al. Grouplanner: a group recommender system for tourism with multi-agent
microservices[C]//International Conference on Practical Applications of Agents and Multi-Agent Systems. Cham:
Springer International Publishing, 2022: 454-460.

[4] Duan H, Ji Z, Wu S, et al. Distributed Microservice Deployment for Satellite Edge Computing Networks: A
Multi-Agent Deep Reinforcement Learning Approach[J]. IEEE Transactions on Vehicular Technology, 2025.

[5] Bondarenko A S, Korolev D V, Zaytsev K S. Study the efficiency of using multi-agent models in modern
microservice architectures[J]. International Journal of Open Information Technologies, 2024, 12(8): 48-55.

[6] Jagutis M, Russell S, Collier R W. Using multi-agent microservices (mams) for agent-based
modelling[C]//International Workshop on Engineering Multi-Agent Systems. Cham: Springer Nature Switzerland,
2023: 85-92.

[7] Verkhova G V, Akimov S V, Prisyazhnyuk S P. Distributed Multi-agent Modeling of Complex Systems[C]//2021
XXIV International Conference on Soft Computing and Measurements (SCM). IEEE, 2021: 63-66.

[8] Krishnan R, Durairaj S. Reliability and performance of resource efficiency in dynamic optimization scheduling
using multi-agent microservice cloud-fog on IoT applications[J]. Computing, 2024, 106(12): 3837-3878.

[9] Wang Y, Tang T, Fang Z, et al. Intelligent Task Scheduling for Microservices via A3C-Based Reinforcement
Learning[J]. arXiv preprint arXiv:2505.00299, 2025.

[10]Kallel A, Rekik M, Khemakhem M. DRL4HFC: Deep Reinforcement Learning for Container-Based Scheduling
in Hybrid Fog/Cloud System[C]//ICAART (2). 2024: 231-242.

[11]Wang H, Liu Y, Li W, et al. Multi-agent deep reinforcement learning-based fine-grained traffic scheduling in data
center networks[J]. Future Internet, 2024, 16(4): 119.

[12]Ben Sada A, Khelloufi A, Naouri A, et al. Multi-agent deep reinforcement learning-based inference task
scheduling and offloading for maximum inference accuracy under time and energy constraints[J]. Electronics,
2024, 13(13): 2580.

[13]Jeong Y, Maria E, Park S. Towards energy-efficient service scheduling in federated edge clouds[J]. Cluster
Computing, 2023, 26(5): 2591-2603.

