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Abstract: This paper proposes an intelligent modeling framework for classifying high-dimensional,
dynamic, and heterogeneous memory access behaviors in cloud computing environments. The method takes
memory access sequences as input and applies a structure-enhanced attention mechanism to extract hidden
dependencies. This improves the model's ability to capture key semantics within the temporal information.
At the same time, a dynamic semantic knowledge graph is constructed to link access events with contextual
entities such as tenants, services, and tasks. A temporal dimension is also introduced to build a graph
representation that updates in real-time as the system evolves. In the model design, structural attention
weights enable context-aware behavior classification. The dynamic integration of the semantic graph further
enhances the model's ability to understand and classify complex behavior paths. Based on this architecture,
the paper conducts comparative experiments, ablation analysis, and hyperparameter sensitivity evaluations
using several public datasets. The results confirm the advantages of the proposed method in terms of F1-
Score, AUC-ROC, and Accuracy. Experimental findings show that the model effectively detects implicit
anomalies in multi-tenant systems. It also reduces false positive rates and improves the recognition of
complex behavior patterns. The model demonstrates strong stability and robustness. The framework is end-
to-end and is suitable for high-dimensional time-series classification tasks in dynamic settings. It enhances
the intelligence level of behavior recognition and risk control in cloud platforms.

Keywords: Structural attention mechanism; semantic graph modeling; memory access behavior; high-
dimensional temporal discrimination

1. Introduction

The rapid development of cloud computing infrastructure has driven the centralized deployment of critical
services and computing tasks in virtualized environments[1]. This trend raises higher demands for precise
scheduling of computing resources and deep security monitoring. In such environments, memory plays a key
role as a shared computing resource among multiple tenants. Memory access behavior carries highly
concentrated information. Especially under Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)
architectures, memory access patterns in the cloud reveal tenant behaviors, task execution paths, and potential
system risks. Therefore, analyzing access behavior at the memory level has become essential for ensuring
resource security and platform stability. However, due to the complexity of task scheduling and resource
sharing in modern cloud platforms, traditional static rule-based detection or low-dimensional statistical
methods fail to capture subtle distinctions between normal and abnormal memory behaviors[2].

In cloud security, memory-level threats are highly concealed and dynamic. Attackers may construct
sophisticated memory access patterns such as side-channel attacks, cache poisoning, or row hammers to



evade traditional intrusion detection systems. At the same time, some non-malicious but anomalous behaviors
like burst load or rescheduling can also lead to changes in memory access characteristics. These may cause
false positives or negatives in detection systems. Thus, building a discriminative mechanism with contextual
awareness and semantic understanding in high-dimensional, strongly coupled, and heterogeneous memory
access time series has become a major challenge. This requires models with a deep understanding of
sequential patterns and the ability to dynamically link access behaviors with system states and tenant
contexts[3,4].

In this context, knowledge graph techniques have shown unique advantages in expressing complex entity
relationships and semantic constraints. They have become important tools for modeling heterogeneous
relationship networks in cloud systems[5]. By representing memory access behaviors together with tenants,
services, nodes, tasks, and time windows in a unified graph structure, one can systematically reveal the
structural and semantic associations behind access activities. Meanwhile, the development of attention
mechanisms in deep learning enables the effective capture of keyframes, local patterns, and long-range
dependencies in high-dimensional time series. This significantly enhances discriminative performance in
complex behavior sequence anomaly detection. Therefore, integrating knowledge graphs with attention
mechanisms offers a new approach to addressing memory access anomaly detection in cloud environments[6].

Furthermore, the diversity of services, dynamic scheduling, and tenant heterogeneity in cloud platforms make
it impossible to rely on single semantic labels or discrete event definitions. Many potential threats may not
show obvious statistical deviations at the early stage. However, their behavioral paths may already disturb
system structures. For instance, some attacks build long access chains and mimic normal behavior
patterns[7,8]. These may leave traces of abnormal access long before performance indicators change.
Modeling access behavior based on contextual structure and introducing multi-granularity attention
mechanisms along the time axis can help identify such structurally hidden yet behaviorally abnormal threat
paths at an earlier stage. This is critical for building a forward-looking and robust cloud security defense
system.

In summary, for anomaly detection in memory access patterns within cloud environments, it is essential to
build an intelligent model that integrates high-dimensional time-series modeling with complex structural
semantic understanding. This enhances the precision in detecting malicious behavior. It also improves the
platform's ability to sense risks such as abnormal resource usage, policy misconfiguration, and system
degradation. As cloud infrastructure evolves and system complexity increases, exploring Al models with
knowledge enhancement and semantic adaptability will be key to advancing the security, stability, and
intelligence of cloud platforms.

2. Related work
2.1 Attention Mechanism

The attention mechanism was initially proposed to enhance sequence modeling capabilities. It aims to
address the problems of gradient vanishing and information loss in traditional neural networks when
processing long sequences. In temporal modeling tasks, attention assigns different weights to various
positions in the input sequence[9,10]. This allows the model to automatically focus on the most relevant
information for the current task. As a result, it significantly improves the modeling of complex dependencies.
Attention is especially effective for data with strong temporal dependencies and high-dimensional dynamic
features. It enhances the model's ability to represent the global context. This has led to widespread application
in fields such as natural language processing and speech recognition. In recent years, attention mechanisms
have evolved into various forms, including self-attention, cross-attention, and multi-head attention. These
developments have expanded its applicability to more diverse scenarios and data structures[11].

In cloud computing environments, attention mechanisms demonstrate strong adaptability and expressive
power. They play a key role in tasks such as resource monitoring, behavior modeling, and anomaly



detection[12]. Cloud platforms are highly dynamic. Resource scheduling is frequent. The interactions and
behavior sequences between services often show complex nonlinear evolution. Traditional statistical methods
or fixed-window sequence models often fail to capture subtle changes and contextual dependencies in
behavior patterns. With attention mechanisms, models can selectively focus on the most relevant parts of
historical sequences according to the current decision task. This improves both the accuracy and
interpretability of anomaly detection. Furthermore, when combined with multi-scale modeling and
hierarchical attention, the model can extract multi-granularity features from behavior sequences. This
provides richer support for high-dimensional time-series classification tasks[13].

As understanding of the attention mechanism deepens, its capacity to handle both structured and unstructured
data continues to grow. In graph-based applications, attention can capture structural relationships between
nodes[14,15]. It also allows the model to evaluate edge weights and contextual importance. This enables fine-
grained modeling of complex interaction structures. In the field of cloud security, especially in modeling
memory-level access behaviors, access sequences often carry complex semantics and contextual
dependencies. These include tenant identities, scheduling nodes, and task properties[16]. Attention
mechanisms help establish effective associations among high-dimensional and heterogeneous features. This
enhances sensitivity and robustness in abnormal pattern recognition. Such capabilities are particularly critical
for detecting threats that rely on fine-grained timing and behavioral patterns, such as side-channel attacks or
cache interference.

In addition, the integration of attention mechanisms with other deep learning modules continues to advance.
This has driven the development of cross-modal and multi-source joint modeling approaches. For example, in
modeling multi-modal system observability, attention helps represent complementary relationships among
metrics, logs, and topology data. In tasks involving semantic enhancement through knowledge graphs,
attention allows the model to dynamically focus on the most relevant graph structures or entity relations. This
improves the semantic interpretability of abnormal behavior. The flexibility of such combinations makes
attention not only a tool for sequence modeling but also a general framework for understanding complex
system behaviors. Applying it to anomaly detection of memory access patterns in cloud platforms enhances
not only the methodological level but also the semantic and decision-making capabilities of the entire
detection system.

2.2 Knowledge Graph

As a structured semantic network that represents entities and their relationships, knowledge graphs have
played an increasingly important role in intelligent systems in recent years[17]. The core idea is to connect
semantically clear entity nodes with relational edges using a graph structure. This builds a knowledge
representation framework that is interpretable, inferable, and scalable[18]. Compared to traditional vector
space modeling methods, knowledge graphs provide a more natural way to represent heterogeneous
information, multi-source data, and contextual dependencies in complex systems. They are particularly
suitable for describing large-scale systems composed of multi-layer structures, various entity types, and
dynamic interactions. In cloud computing environments, this modeling approach is especially effective for
capturing the dynamic coupling among tenants, services, and resources. It helps integrate scattered
information into a unified semantic representation space[19].

In cloud platform security and operations scenarios, the relationships among entities are highly complex.
These include, but are not limited to, interactions between tenants and virtual machines, tasks and containers,
services and nodes, and events and metrics. Traditional log analysis or metric monitoring methods struggle to
establish systematic connections in such heterogeneous and semantically ambiguous data. With the
introduction of knowledge graphs, this data can be mapped into a graph structure with explicit semantic
relationships. This expands the understanding of system behavior from isolated points to broader surfaces[20].
It also supports the construction of event chains, causal chains, and even potential threat chains. These
semantic structures provide crucial support for downstream classification and detection tasks. For example,
by associating memory access behaviors with service structures, tenant contexts, and security policies, a



complete behavioral context can be constructed. This significantly improves system perception in the
presence of vague, sparse, or novel threats.

Moreover, knowledge graphs possess inherent scalability and reasoning capabilities. They support the
discovery of hidden associations and the completion of missing information based on existing knowledge.
This is particularly critical in real-world cloud security applications. When facing new attack patterns or
unseen behavior types, knowledge graphs can estimate unknown relationships through graph propagation and
reasoning. This helps models maintain strong detection performance even in incomplete or noisy data
environments. Especially in high-dimensional time-series scenarios, behavioral evolution often involves the
joint dynamics of multiple entities and events. Knowledge graphs offer a stable semantic support framework.
This helps models maintain structural consistency and semantic coherence when handling long sequences and
multi-hop dependencies. These features are essential for detecting complex attack paths and identifying
chained abnormal behaviors[21,22].

In recent years, the integration of graph neural networks and attention mechanisms has further enhanced the
modeling power of knowledge graphs. Graph neural networks enable high-dimensional embedding of graph
structures. Attention mechanisms allow dynamic weighting of nodes and relationships. Together, they
support more flexible and precise graph semantic modeling. This approach improves the expressive power of
knowledge graphs. It also allows joint modeling with other modalities such as time-series data, textual
information, and metric sequences. In the context of anomaly detection in memory access patterns on cloud
platforms, knowledge graphs help the model understand not only what access occurred, but also why it
occurred and which system entities were involved. This leads to more comprehensive semantic-level
decisions. This structured and semantic-aware modeling approach brings new perspectives and directions for
cloud security research.

3. Method

This study proposes a high-dimensional temporal discrimination model that integrates the attention
mechanism and knowledge graph to identify abnormal patterns of memory layer access behavior in cloud
computing environments. This method deeply models access behavior from two dimensions: structure and
timing, and has two key innovations. First, the Structure-Enhanced Attention Mechanism (SEAM) is
introduced to improve the model's perception of fine-grained differences in behavior by jointly modeling
access sequences and their contextual dependencies; second, a Dynamic Semantic Knowledge Graph
(DSKG) is constructed to semantically connect memory access behavior with multiple entities such as
tenants, services, tasks, and time, so that the model can structuredly express and reason about complex
access behavior paths. This dual innovation provides a new modeling paradigm and semantic support for the
intelligent discrimination of abnormal access patterns in multi-tenant, high-dimensional heterogeneous
scenarios on cloud platforms. The detailed structure of the proposed model is illustrated in Figure 1.

3.1 Structure-Enhanced Attention Mechanism

Structure-Enhanced Attention Mechanism (SEAM) aims to improve the model's structural perception ability
when processing high-dimensional time series data. It is particularly suitable for discrimination tasks with
complex contextual dependencies and semantic sparsity problems in memory access sequences. Although
the traditional self-attention mechanism performs well in capturing long-distance dependencies between
elements in a sequence, it often ignores the structural information behind the sequence, such as resource
allocation in a multi-tenant environment, topological relationships between services, and contextual
constraints on access paths. To this end, SEAM introduces a structural modulation factor based on the
standard attention mechanism to dynamically integrate the semantic structure and entity relationship on
which the access behavior depends in the attention calculation. Its goal is to align the original behavior



representation to the structural semantic space to enhance the sensitivity and generalization ability of the
discrimination task. Its module architecture is shown in Figure 2.
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Figure 2. SEAM module architecture

Specifically, given a memory access sequence representation X =[x,,x,,...,x, ], where each x, represents

the feature vector of an access event, SEAM first generates query, key, and value matrices through linear
transformation:

O=XW,,K=XW,,V=XW,
Where W,,W,,W, € R”" is a trainable parameter. Then calculate the basic attention weight:

exp(Q, K)
> exp(0, - Kp)

j=



This weight is modeled only based on content similarity and fails to reflect the structural dependencies
between access behaviors. Therefore, SEAM designs a structural modulation factor S, € R to describe the

structural relevance between positions i1 and j in the knowledge graph. The final structure-enhanced attention
weight is defined as:

exp(Q[-KjT +AS;)
ZZ:I exp(Qi KkT +/1Sik))

Where A is the importance coefficient for adjusting the structural weight, which is used to balance the
influence of structural information and content information in attention calculation.

i

In terms of obtaining structural information, SEAM relies on the context subgraph representation extracted
from the knowledge graph. For each access event x;,, its structural adjacency set is defined as N(i), and its

structural representation is:

5= 2 $0.x))

JeN(i)
Where 7, represents the semantic relationship type of the edge from i to j, and ¢(-) is a relationship-

aware fusion function that is used to fuse neighbor features and edge semantic type encoding into a unified
representation. Finally, the structural modulation factor S, can be approximated by the similarity or

attention score between structural embeddings, for example:
T
58,
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This structural enhancement mechanism makes the attention distribution not only limited to surface
similarities but also introduces the relationship priors between entities in the semantic graph, thereby having
a stronger ability to distinguish access patterns with similar semantics but different behaviors.

Finally, SEAM obtains context-aware behavior embedding representation by applying structure-enhanced
attention to value vector aggregation:

n

X, = a;V;

j=1
This embedding not only captures the long-distance semantic dependencies between access events but also
integrates the contextual information implicit in the graph structure. Through this mechanism, the model can
build a more structure-recognizing temporal behavior representation in complex cloud environments,
providing a solid foundation for subsequent anomaly identification and semantic interpretation.

3.2 Dynamic Semantic Knowledge Graph

Dynamic Semantic Knowledge Graph (DSKG) aims to model complex, high-dimensional, and dynamically
evolving entity relationships in cloud environments to provide structured semantic support and assist in the
deep understanding of the access behavior context in abnormal identification tasks. Memory access behavior
in cloud platforms often depends not only on the current task itself, but also on a variety of contextual
factors such as tenant strategies, service topology, and scheduling decisions. There are clear but dynamically
changing semantic relationships between these factors, so it is necessary to build a knowledge graph
structure with time perception and semantic generalization capabilities. DSKG achieves unified abstraction



and structural encoding of multiple types of behavior backgrounds through entity-relationship-time triple
modeling, providing context enhancement capabilities for behavior modeling and identification. Its module
architecture is shown in Figure 3.
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Figure 3. DSKG module architecture

Formally, the knowledge graph is defined as a set of triples G ={(4,r,¢,7)} , where h and t represent the

head entity and the tail entity, r represents the semantic relationship between them and 7 represents the
timestamp of the relationship. The entity space ¢ in the graph contains different types of system objects
such as tenants, services, tasks, and nodes, while the relationship space R includes directed edges with
contextual meanings such as dependencies, deployments, triggers, and shares. For each edge, a time-
enhanced graph embedding is constructed:

e(h,r,t,r) = f;emporal (eh > er > et H T)
Where  f,,....() 1 the temporal encoding function, which integrates the graph structure and time
evolution information.

To effectively aggregate the graph structure, the adjacency context set N(v) is introduced to model the
local subgraph of each entity node and calculate its structural context representation:

¢, = Z Qyyr '¢(€u,€r,7')

(u,r,7)eN(v)

Where a,, is the structural attention weight, which indicates the importance of the relationship between
entities u and v in relation r, and ¢#(:) is the relation-time-aware adjacency fusion function. This structural
context is used to enhance the semantic context perception of access behavior.

At the full-graph level, to further construct a fusion representation across entity types, a graph representation
fusion strategy is adopted to uniformly encode subgraph embeddings of different types, expressed as:

g, = Fusion(e,,c,)



The Fusion module can aggregate the structure representation and the original entity embedding using a
gating mechanism or an attention method, and output the final semantically enhanced node representation.
These node embeddings can further form the global representation of the dynamic semantic graph:

Gk =18, |vee}

Through this modeling approach, DSKG can dynamically characterize the potential causal paths and
semantic dependencies between different behaviors in the system, and provide structural constraints and
contextual interpretation capabilities for the discriminant module.

Finally, in order to integrate the graph structure with the temporal behavior, the entity representation output
by DSKG is fed into the fusion module corresponding to the access sequence embedding to construct the
structure-aware behavior vector. This process can be formalized as:

56[ = V(xiagl‘)

x, 1s the original representation of the i-th element in the access sequence, g, is the corresponding graph

l

semantic embedding, and y(-) is the fusion function (such as splicing, gating, multiplication, etc.).

Through this mechanism, the model acquires the ability to jointly model the entity semantics and structural
context behind each access behavior, providing a solid graph semantic foundation for the accurate
identification of abnormal behavior.

4. Experimental Results
4.1 Dataset

This study uses the Alibaba Cluster Trace 2018 as the primary experimental dataset to simulate and analyze
memory access behavior in real cloud environments. The dataset was collected by Alibaba Cloud from
production-level clusters. It includes records of scheduling, resource allocation, and task execution over an
extended period on thousands of servers. It has been widely adopted in large-scale cloud system modeling
and behavior analysis, offering high representativeness and practical value.

The dataset provides detailed operational information at both the job and instance levels. It includes
multidimensional metrics such as CPU, memory, disk usage, task lifecycles, job dependencies, and
container scheduling. In this study, particular attention is paid to the instance-level resource usage logs and
scheduling records. By modeling memory allocation and access states of tasks over time, high-dimensional
time-series sequences and structural contexts are constructed. These serve as input features for the
subsequent anomaly detection tasks.

In addition, the dataset contains mixed workloads across multiple tenants and hybrid scheduling patterns
that involve both online and offline task executions. This makes it especially suitable for modeling complex
semantic structures and multi-source dependencies in real-world scenarios. By building dynamic knowledge
graphs and temporal behavior embeddings, it becomes possible to reconstruct the operational context of real
cloud systems. This enhances the robustness and generalization capability of the model in practical settings.

4.2 Experimental setup

The experiments in this study were conducted on a high-performance computing node. The node is equipped
with dual Intel Xeon Gold 6226R processors, providing a total of 48 cores. It also includes 512 GB of
DDR4 memory, two NVIDIA A100 GPUs with 40 GB each, and a 1 TB NVMe SSD. This configuration
supports large-scale graph embedding and high-dimensional time-series modeling tasks. All compute-



intensive modules, including graph neural network construction, attention weight training, and structure
fusion, were executed on GPUs to significantly accelerate both training and inference.

The software environment was based on Ubuntu 20.04 LTS. Python 3.10 was used as the main
programming language. PyTorch 2.1 was selected as the deep learning framework. DGL (Deep Graph
Library) version 1.1 was used for handling dynamic graph structures and graph neural network training.
Additional libraries such as NumPy, Pandas, matplotlib, and Scikit-learn were used for data preprocessing,
visualization, and result analysis. GPU acceleration was supported by CUDA 12.1 and cuDNN 8.9 to ensure
efficiency and stability during graph construction and attention computation.

During model deployment and training, a mixed precision training strategy was applied to optimize memory
usage. Distributed tensor parallelism was used to support large-scale graph training. All model training was
conducted with fixed random seeds to ensure reproducibility. Logging and monitoring were implemented
using TensorBoard and Prometheus, integrated with Grafana. This setup enabled effective tracking and
analysis of key performance metrics. The overall environment ensured stable operation under resource-
intensive conditions and reliable experimental results.

4.3 Experimental Results
1) Comparative experimental results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method F1-Score AUC-ROC Accuracy
GraphSAGE|23] 78.2% 83.5% 80.1%
GAT[24] 81.4% 86.2% 82.7%
STG-NCJ25] 84.7% 89.8% 85.5%
Ours 88.9% 93.1% 89.4%

As shown in the results of Table 1, the proposed model significantly outperforms all baseline methods in
terms of F1-Score, AUC-ROC, and Accuracy. This demonstrates its strong performance in detecting
abnormal memory access behavior in cloud environments. The performance advantage reflects the
effectiveness of the proposed method in jointly modeling high-dimensional time-series data and complex
structural semantics. It also shows the model's robustness under multi-tenant mixed workloads and dynamic
resource scheduling. Compared with traditional graph neural network models, the proposed model more
precisely captures contextual differences and semantic heterogeneity associated with abnormal behaviors.

Specifically, GraphSAGE lacks a fine-grained structural attention mechanism. It extracts information only
from adjacent nodes in a static graph. This limits its classification accuracy when dealing with time-sensitive
and frequently evolving access sequences. GAT introduces attention between nodes and assigns dynamic
weights to neighbors. However, it still fails to model semantic paths and structural dependencies underlying
access behaviors. As a result, its generalization ability remains limited in complex scenarios. STG-NC
incorporates temporal modeling capabilities. Yet its structural representation relies on a fixed graph topology
and lacks dynamic integration with contextual semantic graphs. This prevents it from capturing potential
higher-order associations.



In contrast, the SEAM-DSKG model proposed in this study introduces a structure-enhanced attention
mechanism and a dynamic semantic knowledge graph. It deeply integrates access behaviors with their
semantic background. The model can not only detect surface-level behavioral changes but also understand
the structural intent and entity associations behind these behaviors. This context-aware capability is crucial in
cloud platforms. Many abnormal accesses are not isolated events but are triggered by structural or policy-
level changes that lead to cascading effects. As a result, the model achieves leading performance across all
metrics. This validates the practicality and advancement of combining structural and semantic modeling for
cloud security classification tasks.

Furthermore, the improvement in AUC-ROC highlights the model's superior ability to distinguish the
boundary between normal and abnormal behavior distributions. This indicates that the model not only
performs accurate classification but also provides more reliable confidence estimates for anomalies. In real-
world cloud platforms, this feature helps reduce both false positives and false negatives. It improves system
response efficiency and enhances the accuracy of security policy adjustments. This also provides a solid data
foundation for automated defense mechanisms and operational decisions. Overall, the experimental results
confirm the practical value and engineering potential of the proposed method in dynamic, high-dimensional,
and structurally complex cloud environments.

2)  Ablation Experiment Results

This paper further gives the results of the ablation experiment as shown in Table 2.

Table 2: Ablation Experiment Results

Method F1-Score AUC-ROC Accuracy
Baseline 81.0% 85.2% 82.3%
+SEAM 85.3% 89.6% 86.1%
+DSKG 84.5% 88.9% 85.2%
Ours 88.9% 93.1% 89.4%

As shown in the ablation results in Table 2, both core components of the proposed model—the Structure-
Enhanced Attention Mechanism (SEAM) and the Dynamic Semantic Knowledge Graph (DSKG)—contribute
significantly to the overall performance improvement. The baseline model, used as a reference, does not
include structural information or contextual semantic modeling. Although it has some time-series modeling
capability, its effectiveness in identifying abnormal behaviors in complex cloud environments is limited. In
multi-tenant and multi-service scenarios, it shows a relatively high false positive rate.

When the SEAM module is added to the baseline, the model shows notable improvements across all three
metrics. In particular, the F1-Score increases by 4.3 percentage points. This indicates that the structure-
enhanced attention mechanism improves the model's ability to capture contextual dependencies between
access behaviors. It enables the model to handle scenarios with complex behavior chains and long
dependency paths more effectively. This structural awareness is critical for detecting abnormal access
patterns hidden within normal scheduling processes, especially those that cannot be easily distinguished by
surface features.

Similarly, adding the DSKG module also leads to stable performance gains. This is mainly due to the ability
of the knowledge graph to model semantic relationships among multiple entities. DSKG enables the model to
understand higher-level semantic factors behind access behaviors, such as tenant policies, service deployment
locations, and task dependencies. As a result, the model gains a more comprehensive understanding of



behavioral context. Even when feature-level changes are subtle, the model can make reasonable judgments
based on structural context. This helps reduce both false positives and false negatives.

The full model, which integrates both SEAM and DSKG, achieves the best results on F1-Score, AUC-ROC,
and Accuracy. This demonstrates the synergistic effect of structural modeling and semantic enhancement.
These results confirm that the proposed framework offers stronger classification and generalization
capabilities in high-dimensional, dynamic, and structurally complex cloud environments. The joint modeling
strategy provides an effective path toward building more robust and intelligent cloud security behavior
detection systems.

3)  Analysis of the impact of different numbers of attention heads on model performance

This paper further analyzes the impact of different numbers of attention heads on model performance, and
the experimental results are shown in Figure 4.
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Figure 4. Analysis of the impact of different numbers of attention heads on model performance

Figure 4 shows that different numbers of attention heads influence the model in a clear yet nonlinear manner
on three key metrics (F1-Score, AUC-ROC, and Accuracy). The effect indicates that the benefit of the
Structure-Enhanced Attention Mechanism (SEAM) depends not only on using attention but also on setting its
internal parameters. The headcount is a sensitive hyperparameter that strongly shapes final performance.

The F1-Score reaches its peak when the headcount is four. The curve is parabolic: too few heads limit
modeling power, while too many add noise. A moderate head count improves the model's ability to outline
behavior boundaries in high-dimensional access sequences and contextual graph structures. An excessive
number of heads may dilute contextual information and weaken local semantic focus.

The AUC-ROC rises steadily as the headcount increases. More heads help the model draw a sharper
confidence boundary between normal and abnormal cases. This suggests that multi-head attention improves
classification robustness and structural generalization. The benefit is crucial in cloud environments where
dynamic graph relations are unstable and multiple interaction paths must be captured.

Accuracy, in contrast, declines when the head count becomes large. The drop may result from overfitting or
higher sensitivity to distribution shifts under high-head settings. The fluctuation shows that overall accuracy
alone cannot reflect the real effectiveness of fine-grained behavior classification. In this task, the more stable
AUC and F1 provide better guidance. Overall, the experiment confirms that the proposed model is sensitive
to attention-related hyperparameters and offers clear directions for parameter tuning during deployment.

4)  Comparison of discrimination effects under different knowledge graph update frequencies

This paper also gives a comparison of the discrimination effects under different knowledge graph update
frequencies, and the experimental results are shown in Figure 5.
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Figure 5. Comparison of discrimination effects under different knowledge graph update frequencies

The experimental results show that the update frequency of the knowledge graph affects the model in
different ways. The F1-Score reaches its maximum when the update interval is 10 minutes, then decreases as
the interval grows. AUC-ROC rises as the interval increases. Accuracy follows the opposite trend and
declines slowly. These divergent patterns indicate that both very frequent and very sparse updates can impair
performance. They also highlight the critical role of graph freshness in cloud security tasks.

The parabolic shape of the F1-Score curve can be explained as follows. A very high update rate, such as one
minute, injects many short-term fluctuations into the graph structure and brings noise when the model tries to
recover abnormal behaviors. A very low rate, such as 60 minutes, lets the graph fall behind real events and
weakens precision. A moderate interval of 10 minutes balances timeliness and stability. It helps SEAM-
DSKG build a more reliable link between continuous access sequences and dynamic context. This leads to
the best overall classification of anomalies.

The upward trend of AUC-ROC with longer intervals shows that ranking ability improves even if overall
accuracy falls slightly. Fewer updates reduce structural jitter during graph reconstruction. The model can then
measure normal and abnormal distances with a more consistent semantic view. When decision thresholds are
tunable or use adaptive strategies, a lower update frequency can raise confidence in the predictions. This
matches real cloud deployments where threshold optimization is common.

The steady decline in accuracy reveals that a static threshold is sensitive to different levels of graph freshness.
A longer interval lets the model accept some samples that are normal in outdated semantics, which lowers the
hit rate. If a fixed threshold is used for hard classification, a long interval may weaken real-time alerts.
Dynamic thresholds or cost-sensitive strategies could offset this effect. Overall, the results stress the coupling
between the graph update strategy and threshold design. Practical deployments must weigh update cost,
timeliness, and tolerance mechanisms to gain the full benefit of dynamic semantic graphs in anomaly
detection.

5)  Sensitivity analysis of temporal coding dimension to semantic enhancement effect

This paper also gives a sensitivity analysis of the time coding dimension on the semantic enhancement effect,
and the experimental results are shown in Figure 6.

Figure 6 shows the effect of different temporal encoding dimensions on the model's F1-Score. The results
indicate a clear nonlinear relationship in the role of temporal encoding within semantic enhancement. When
the encoding dimension is low, such as 4 or 8, the model has limited capacity to represent temporal dynamics.
This weakens its ability to capture time-related features in behavior sequences, which affects the performance
of context semantics in the structure-enhanced attention mechanism.
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Figure 6. Sensitivity analysis of temporal coding dimension to semantic enhancement effect

As the temporal dimension increases, the model achieves optimal performance around 16 dimensions. This
suggests that, at this level, temporal information is well integrated with graph-based semantics. It enhances
the model's ability to distinguish abnormal access behaviors. However, when the dimension increases further
to 64 or 128, the performance declines. This may be due to excessive dimensionality introducing redundant
noise. The representation space becomes sparse, which interferes with learning a clear decision boundary.

These results show that, when building dynamic knowledge graphs, temporal embedding is as important as
the graph structure itself. The granularity and compression of time representations are critical. If the
granularity is too coarse, the model cannot reflect fine-grained behavior rhythms. If too fine, it increases
complexity without adding meaningful information. Therefore, in semantic enhancement tasks, the temporal
encoding dimension must be carefully tuned. It should match the coupling between behavior sequences and
contextual structure to achieve optimal classification performance.

5. Conclusion

This paper addresses the problem of complex memory access behavior classification in cloud computing
environments. It proposes a high-dimensional time-series modeling framework that combines a structure-
enhanced attention mechanism with a dynamic semantic knowledge graph. The approach jointly models
access sequences and their contextual structural semantics. It improves the model's ability to represent
abnormal behaviors and enhances classification robustness. By integrating attention with graph structures, the
model captures fine-grained dependencies across tasks and tenants. It also demonstrates higher accuracy and
interpretability than traditional methods in dynamic, multi-tenant cloud settings.

At the methodological level, the paper introduces the Structure-Enhanced Attention Mechanism (SEAM).
This enhances the model's ability to perceive structural dependencies within behavior patterns. Meanwhile,
the construction of the Dynamic Semantic Knowledge Graph (DSKG) allows the model to continuously track
semantic changes in system states. This addresses the limitations of static graph modeling, which often lags
behind and becomes unstable. Through comparative experiments, ablation studies, and sensitivity analysis,
the paper systematically validates the effectiveness of each module under real cloud data. It further confirms
the critical role of semantic enhancement in behavior classification tasks.

From an application perspective, the results of this study can support traditional cloud intrusion detection and
resource misuse monitoring. They can also extend to emerging areas such as container security, edge-



intelligent collaborative detection, and anomaly detection in microservice dependencies. In scenarios with
strong isolation, high elasticity, and multiple tenants, the combined modeling of structure and time enables
more accurate risk identification and dynamic policy scheduling. This provides a methodological foundation
for building intelligent cloud security systems with real-time responsiveness. The proposed framework is also
scalable and can be deployed in production-grade monitoring systems, offering clear engineering value.

Future research can proceed in several directions. One challenge is the automatic evolution of graph
structures. Self-supervised graph learning and generative graph construction could improve graph
representation quality. Another issue is resource efficiency in training and inference under large-scale
distributed systems. Lightweight architectures and online incremental updates may be explored. In practical
deployments, integrating risk assessment and interpretability frameworks could further promote the model's
application in high-security domains such as critical infrastructure, financial clouds, and government clouds.
In conclusion, the proposed modeling approach provides a solid foundation for advancing intelligent security
in cloud computing. It also offers a general solution for high-dimensional and heterogeneous behavior
modeling tasks.
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