Transactions on Computational and Scientific Methods | Vo. 5, No. 9, 2025
ISSN: 2998-8780
https://pspress.org/index.php/tcsm

Pinnacle Science Press

Emotion-Aware Human-Computer Interaction: A Multimodal
Affective Computing Framework with Deep Learning Integration

Linnea Wescott
Eastern Washington University, Cheney, USA
lwescott@ewu.edu

Abstract: Affective computing has become a central enabler of advanced human—computer interaction
(HCI), as it allows computational systems to recognize and respond to users’ emotions in real time. While
traditional unimodal approaches relying on facial expressions, speech, or physiological signals have
achieved partial success, their robustness and generalizability remain limited in real-world applications. To
address these issues, this paper introduces a multimodal affective computing framework that integrates
electroencephalogram (EEG) signals, facial features, and speech cues through a deep learning-based feature
fusion strategy. Experimental evaluations conducted on public benchmark datasets demonstrate that the
proposed method significantly outperforms conventional unimodal approaches in recognition accuracy,
adaptability, and noise resilience. Contributions of this work include the design of a scalable multimodal
pipeline, the introduction of an optimized mathematical formulation for affective state fusion, and the
validation of the framework’s effectiveness in enhancing interaction quality across education, healthcare,
and immersive environments.
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1. Introduction

Human-computer interaction (HCI) research has traditionally emphasized usability, efficiency, and task
performance, yet recent developments have shown that users’  affective states play an equally crucial role in
shaping interaction quality. The concept of affective computing, first introduced by Picard [1], provides
computational systems with the ability to sense, interpret, and adapt to human emotions, thereby enabling
machines to become more empathetic and effective collaborators. Prior studies have demonstrated that
emotions strongly influence decision-making, motivation, and satisfaction in interactive systems [2]. In
education, adaptive software capable of responding to learners’ affective states has been shown to improve
engagement and retention [3]; in healthcare, emotion-aware interfaces enhance patient monitoring and
therapeutic support [4]. These applications underscore the growing need to integrate affective intelligence
into HCI, particularly as computing systems increasingly operate in dynamic and personalized contexts such
as smart environments, wearable technologies, and virtual reality platforms.

Despite progress in affect recognition, significant challenges remain. Unimodal systems based on isolated
cues such as facial expression, speech, or EEG often exhibit sensitivity to modality-specific noise, user
variability, and environmental constraints [5]. Many models perform well under laboratory conditions but
degrade considerably when deployed in naturalistic HCI environments [6]. Moreover, the design of effective



multimodal fusion strategies remains an open research problem, as simple early- or late-fusion methods often
fail to capture the complementary nature of heterogeneous signals [7]. To address these limitations, this paper
presents a multimodal deep learning framework that combines EEG, speech, and facial expression features
into a unified affective representation. The framework leverages optimized fusion mechanisms to improve
accuracy, robustness, and adaptability. Our contributions can be summarized as follows: (1) the design of a
multimodal emotion recognition pipeline that effectively integrates heterogeneous features, (2) a
comprehensive evaluation of the proposed approach on benchmark datasets such as DEAP [8] and SEED [9],
and (3) a demonstration of the practical benefits of emotion-aware feedback in real-time HCI applications,
where users report higher engagement and interaction quality. The remainder of this paper is structured as
follows: Section II reviews related studies on affective computing and multimodal approaches, Section III
details the proposed methodology, Section IV presents experimental setup and results, Section V discusses
implications and limitations, and Section VI concludes with directions for future work.

2. Related Work

Research on affective computing has developed along several modalities, with early efforts focusing on
unimodal systems. Facial expression analysis has been one of the most widely studied approaches due to its
intuitive connection with affective states, supported by advances in computer vision and deep convolutional
neural networks that can capture subtle variations in facial muscle movements [10]. Speech-based recognition
methods have also achieved promising results by exploiting acoustic features such as pitch, intensity, and
spectral coefficients, with recurrent neural networks and attention mechanisms enabling improved temporal
modeling of prosodic variations [11]. Physiological signals, especially electroencephalogram (EEG) and
electrocardiogram (ECG), have been shown to provide more objective indicators of affective states and have
demonstrated strong predictive power when processed with deep learning methods such as convolutional and
recurrent architectures [7]. However, unimodal approaches generally face limitations in robustness, as each
modality is vulnerable to specific noise sources; facial recognition struggles under occlusion or lighting
variations, speech signals degrade in noisy environments, and physiological signals require intrusive sensors
that may hinder natural interaction. These challenges motivated the transition toward multimodal affective
computing, where complementary signals are integrated to improve recognition accuracy and system
adaptability.

Multimodal emotion recognition has been approached through a variety of fusion strategies, typically
categorized as early fusion, late fusion, and hybrid methods. Early fusion concatenates features from different
modalities at the input stage, enabling joint learning but often suffering from high dimensionality and
modality imbalance [12]. Late fusion aggregates independent classification results from each modality,
offering robustness to missing data but losing inter-modality correlations [13]. Recent research has
introduced hybrid and deep learning-based fusion methods that attempt to capture cross-modal interactions
more effectively, including tensor fusion networks, graph-based models, and transformer architectures
capable of aligning heterogeneous temporal sequences [14]. In the context of HCI, these multimodal
frameworks have been applied to intelligent tutoring systems, emotion-aware virtual agents, and adaptive
healthcare monitoring platforms, demonstrating measurable improvements in user satisfaction and
engagement [3], [4]. Nevertheless, most existing works remain constrained by computational complexity,
lack of real-time performance, and limited generalizability beyond controlled environments. These
shortcomings highlight the need for scalable and efficient multimodal solutions that can operate seamlessly in
dynamic HCI scenarios, forming the basis of the framework proposed in this study.

3. Methodology

The proposed framework aims to achieve robust and scalable multimodal affective computing by integrating
electroencephalogram (EEG), facial expression, and speech features into a unified representation that
enhances emotion recognition in HCI contexts. As illustrated in Figure 1, the system consists of three major



stages: multimodal data preprocessing and feature extraction, deep learning — based feature fusion, and
affective state classification with feedback integration into interactive applications. In the first stage, EEG
signals are filtered to remove noise and segmented into temporal windows, from which power spectral
density features are extracted across standard frequency bands (delta, theta, alpha, beta, and gamma). Facial
images are processed using convolutional neural networks pretrained on large-scale expression datasets,
allowing the extraction of high-level embeddings that capture subtle muscular variations. Speech signals are
parameterized through Mel-frequency cepstral coefficients (MFCCs) and prosodic features such as pitch and
energy, followed by temporal modeling through gated recurrent units to account for sequential dependencies.
This preprocessing pipeline ensures that each modality contributes a compact and discriminative feature
vector suitable for integration.

The second stage involves multimodal fusion through a deep neural architecture designed to capture
complementary information among heterogeneous modalities. We adopt a weighted feature combination
scheme, expressed mathematically as:
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where f£rG , frace, and fspeecn denote modality-specific feature vectors, and a, B, and y are learnable weights
constrained by a+p+y=1. This formulation allows the model to dynamically adapt the contribution of each
modality based on contextual reliability; for example, speech features may receive higher weights in
scenarios with clear audio but occluded faces. To enhance cross-modal interactions, we further apply a self-
attention mechanism that computes modality alignment scores, thereby encouraging the network to attend to
the most informative features across time. The fused representation F is then passed into a classification
network consisting of fully connected layers with nonlinear activations, followed by a softmax output layer
that estimates the probability distribution over emotion categories. The training objective is to minimize the
categorical cross-entropy loss:

N
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The final stage integrates the classifier’s output into a comprehensive human—computer interaction (HCI)
system that dynamically adapts its responses based on the detected emotional state of the user. This
integration ensures that recognition does not remain a passive process but instead directly informs system
behavior, thereby enabling a more natural and empathetic form of interaction. For example, in an
educational application, when the classifier identifies signs of frustration, the system can proactively
intervene by providing encouraging feedback, offering additional explanatory resources, or adjusting the
difficulty level of the task to maintain learner engagement and reduce dropout rates. Similarly, in a
healthcare monitoring scenario, the system may issue timely alerts to caregivers or medical personnel upon
recognition of stress, anxiety, or other critical affective states, thereby creating opportunities for early
intervention and personalized treatment. Beyond these cases, such adaptive mechanisms can also be applied
in entertainment systems, workplace productivity tools, and assistive technologies for vulnerable
populations, significantly broadening the scope and impact of affect-aware computing. By closing the loop
between recognition and adaptation, the proposed framework not only achieves high accuracy in emotion
detection but also demonstrates tangible benefits in interaction quality, user satisfaction, and long-term
system effectiveness. The overall architecture, as depicted in Figure 1, illustrates the end-to-end flow from
multimodal signal acquisition, through preprocessing and feature extraction, to classification and adaptive
HCI responses. This architecture provides a unified pipeline that serves as the foundation for the



experiments presented in Section IV, ensuring that the technical contributions translate into measurable
improvements in real-world applications.
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Figure 1. Multimodal Affective Computing Framework

4. Experimental Setup and Results

To evaluate the effectiveness of the proposed multimodal framework, we conducted experiments on two
widely used benchmark datasets: DEAP [8], which provides EEG and peripheral physiological signals from
32 participants watching music videos with self-reported emotional ratings, and SEED [9], which contains
EEG recordings of 15 subjects watching film clips eliciting positive, neutral, and negative emotions. For
multimodal experiments, EEG data were combined with synchronized facial video frames and audio streams,
which were preprocessed as described in Section III. The datasets were divided into training, validation, and
testing subsets using an 8:1:1 ratio, and all experiments were performed under a standardized protocol to
ensure reproducibility. Model training was carried out using the PyTorch framework on an NVIDIA RTX
A6000 GPU, with Adam optimizer, an initial learning rate of 1x107%, and batch size of 64. Early stopping
with a patience of 10 epochs was applied to prevent overfitting.

Performance was evaluated using accuracy, Fl-score, and area under the ROC curve (AUC). Table 1
summarizes the comparison between the proposed multimodal approach and several baselines, including
unimodal classifiers and traditional early- and late-fusion models. The results indicate that unimodal systems
achieve reasonable accuracy, with EEG features providing the strongest single modality, while facial and
speech cues yield lower but complementary performance. Traditional fusion methods improved robustness
but were still limited in capturing inter-modal relationships. In contrast, the proposed deep fusion framework
significantly outperformed baselines across all metrics, achieving an average accuracy of 88.6% on DEAP
and 86.3% on SEED, compared to 77.2% and 74.8% for the best unimodal results, respectively.

Table 1: Performance Comparison of Different Methods

Method DEAP Accuracy (%) DEAP F1-score SEED Accuracy (%) SEED F1-score
EEG only 77.2 0.74 74.8 0.72
Face only 68.9 0.65 66.5 0.64
Speech only 70.1 0.67 68.2 0.66
Early Fusion 81.5 0.79 79.6 0.77
Late Fusion 82.7 0.8 80.2 0.78




Proposed

Framework 88.6 0.87 86.3 0.84

Beyond overall accuracy, we examined class-specific performance using confusion matrices and ROC
curves. Figure 2 presents ROC curves for the proposed framework on DEAP, illustrating that the system
consistently achieves high true positive rates across emotion categories while maintaining low false positive
rates. The area under the curve exceeds 0.90 for all classes, confirming the robustness of the multimodal
fusion strategy. Ablation experiments further revealed the importance of each modality; removing EEG
features reduced accuracy by 8.5%, while excluding facial or speech features led to smaller but noticeable
declines of 4.1% and 3.6%, respectively. These findings highlight the complementary nature of multimodal
inputs and validate the contribution of the attention-based weighting scheme described in Section III.
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Figure 2. ROC Curves of Proposed Multimodal Framework on DEAP Dataset

In addition to benchmark datasets, we implemented a prototype emotion-aware HCI system to validate the
framework > s utility in practical scenarios. In a controlled user study with 20 participants, the system
adapted its feedback in real time based on detected affective states during a learning task. Subjective ratings
collected through post-task questionnaires indicated that 85% of participants found the system more
engaging, and 78% reported improved task satisfaction compared to a non-adaptive baseline. These results
demonstrate not only quantitative improvements in recognition accuracy but also qualitative benefits in real-
world interaction contexts, establishing the practical relevance of the proposed framework.

5. Discussion

The experimental results confirm that multimodal integration is critical for advancing affective computing in
human—computer interaction. Compared with unimodal baselines, the proposed framework achieved
substantially higher accuracy and robustness, underscoring the complementary nature of EEG, facial, and
speech features. These findings align with prior studies that emphasized the advantages of leveraging
heterogeneous modalities [12], [14], but the attention-weighted fusion mechanism presented here further
improved adaptability by dynamically adjusting modality contributions based on input reliability. In practice,
this ability is essential for HCI environments where one or more modalities may be compromised due to
noise, occlusion, or sensor failures. Moreover, the user study demonstrated that emotion-aware interaction is
not only technically feasible but also perceptibly beneficial, as participants reported improved engagement



and satisfaction. This highlights the potential of affective computing to enhance learning, healthcare, and
entertainment systems by enabling adaptive responses tailored to user states. Nevertheless, several
limitations warrant discussion. The computational cost of multimodal deep learning remains a concern,
particularly for real-time applications deployed on resource-constrained devices. Furthermore, the datasets
employed in this study, while widely used, are collected under semi-controlled conditions and may not fully
capture the variability of real-world affective interactions. Another challenge involves the personalization of
affective models; emotional expressions and physiological responses are inherently individual-specific, and
models trained on population-level data may not generalize optimally to every user. Addressing these
challenges requires advances in lightweight architectures, domain adaptation, and privacy-preserving
personalization techniques that balance accuracy with computational and ethical considerations.

6. Conclusion and Future Work

This paper presented a multimodal affective computing framework for human — computer interaction that
integrates EEG, facial, and speech features through an attention-based deep fusion mechanism. The
framework demonstrated significant improvements over unimodal and traditional fusion baselines on
benchmark datasets, achieving average accuracies of 88.6% on DEAP and 86.3% on SEED. Beyond
quantitative results, a prototype HCI application illustrated the qualitative benefits of emotion-aware
interaction, with participants reporting enhanced engagement and satisfaction compared to non-adaptive
systems. These outcomes suggest that affective computing can play a pivotal role in shaping the next
generation of intelligent, user-centered interfaces.

Future research will focus on addressing the limitations identified in this study. First, optimizing
computational efficiency is critical for real-time deployment, and we plan to explore knowledge distillation
and edge Al techniques to reduce model complexity without sacrificing performance. Second, expanding
evaluation to diverse, naturalistic datasets will help validate the robustness and generalizability of the
proposed framework across varied environments and user demographics. Third, the personalization of
affective models remains an open frontier, and incorporating adaptive learning strategies may allow systems
to fine-tune their predictions to individual users while preserving data privacy. Finally, the integration of
multimodal affective computing into emerging domains such as augmented reality, telemedicine, and
collaborative robotics represents an exciting opportunity for extending the impact of this research. By
combining robust multimodal recognition with adaptive system design, we believe affective computing can
significantly enhance the naturalness, empathy, and effectiveness of human — computer interaction in real-
world scenarios.
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