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Abstract: This study proposes an optimization method based on transfer learning to address issues such as
limited samples, class imbalance, and poor generalization in medical image recognition. The method
incorporates deep neural networks pretrained on large-scale natural image datasets, combined with structural
adaptation modules and feature compression mechanisms, to accurately model key discriminative regions in
medical images. In the overall framework, the base network is first frozen to extract general visual features.
Then, task-relevant low-dimensional reconstruction is performed using linear transformation and
regularization constraints, enhancing the model's sensitivity to target classes. In the classification stage, a
task-specific discriminator is introduced and optimized using a combination of cross-entropy loss and
regularization terms to improve discriminative performance under complex data distributions. To validate
the effectiveness of the proposed method, an experimental setup is designed to assess model robustness and
stability under various conditions, including hyperparameter sensitivity, environmental disturbances, and
distribution shifts. The results show that the method outperforms baseline models across multiple metrics,
demonstrating strong structural adaptability and transfer capability, and significantly improving recognition
accuracy and discriminative power in medical image analysis.
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1. Introduction
Medical imaging has become a crucial foundation for clinical diagnosis and decision support. In recent years,
it has achieved unprecedented progress with the advancement of artificial intelligence[1]. As the volume of
medical imaging data grows rapidly, traditional manual reading methods face challenges such as high
workload, low efficiency, and strong subjectivity. These limitations make it difficult to meet the modern
healthcare demand for fast, accurate, and objective image recognition. Medical image recognition technology
is emerging as a key support for intelligent healthcare systems. By automatically analyzing multiple imaging
modalities such as X-rays, CT, MRI, and ultrasound, it can significantly improve the efficiency and accuracy
of lesion detection, tissue segmentation, and pathological analysis, providing doctors with more precise and
reliable tools[2].
However, medical image recognition differs significantly from natural image recognition. Medical images
typically have high resolution, low contrast, and small lesion areas with blurry boundaries. This makes
meaningful information sparse and hard to extract. In addition, medical data involve patient privacy and
ethical review. Public access to data is strictly limited, resulting in small training datasets and severe label
imbalance. These challenges place higher demands on data-driven methods such as deep neural networks.



Moreover, domain shifts across devices, institutions, and diseases lead to poor generalization, which limits
the clinical applicability of models[3].
In this context, transfer learning has become a research focus in medical image recognition. By leveraging
deep models pre-trained on large-scale natural image datasets, transfer learning transfers general visual
features to medical imaging tasks. It enables effective feature extraction and classification even with limited
data. This approach helps address difficulties in data collection and the high cost of annotation. It also
improves learning efficiency under multi-task and multi-modal conditions. As deep learning models grow in
complexity and size, transfer learning offers a low-cost and efficient solution for intelligent medical image
analysis. It holds significant theoretical and practical value[4].
From a practical perspective, medical image recognition based on transfer learning can greatly enhance the
automation and intelligence of healthcare systems. It has been widely applied in tasks such as lesion detection,
tumor classification, and organ segmentation. This technology supports the development of modern
healthcare services such as remote diagnosis, decision support, and personalized treatment. Especially in
regions with limited medical resources and weak diagnostic capabilities, intelligent models based on transfer
learning can act as substitutes or assistants for medical experts. They help reduce disparities in healthcare
access, improve early screening and diagnosis, lower medical costs, and enhance overall healthcare
capacity[5].
Furthermore, transfer learning plays an important role in promoting data sharing and improving model
generalization. It provides solutions to key challenges such as cross-institution modeling, cross-domain
adaptation, and few-shot learning. This helps build more robust and interpretable medical image recognition
systems. With the progress of related technologies such as multi-source data integration and federated
learning, transfer learning is expected to serve as a bridge for knowledge transfer in medical big data. It lays
the foundation for accurate recognition, intelligent analysis, and secure sharing in medical image tasks.
Continued research and application of this technique will contribute to a more efficient, intelligent, and
equitable diagnostic ecosystem.

2. Related work
In recent studies, the combination of medical imaging and clinical data has significantly improved diagnostic
accuracy and predictive modeling in healthcare applications. By integrating textual and visual modalities,
research such as [6]-[8] has enabled enhanced early disease detection and anomaly recognition. These works
adopt strategies like temporal attention mechanisms and domain-adaptive segmentation frameworks, which
align well with the core idea of enhancing feature extraction under medical-specific constraints.
Further advancements in model structure and transfer strategies have introduced structure-aware adaptation
and temporal modeling techniques [9], providing new insights into the long-range dependency modeling
necessary for medical progression prediction. To improve transfer learning efficiency and model scalability,
parameter-efficient fine-tuning mechanisms have been proposed [10], which closely relate to the structural
adaptation modules and feature compression strategies employed in our work.
Privacy-preserving learning has also gained attention in medical AI, particularly through federated learning
frameworks [11], [12], which offer structural consistency and personalized modeling across distributed data
sources. These methods emphasize robustness in heterogeneous environments and inspire strategies for
handling domain shifts in our transfer learning design.
Beyond medical-specific implementations, developments in attention-based clinical text modeling [13],
autonomous intelligent agent evolution [14], and graph-based reinforcement learning [15] contribute valuable
methodologies. These approaches, although developed in broader contexts, provide transferable deep learning
concepts such as topology-aware learning and adaptive decision processes, which enrich the methodological
foundation of our model.



3. Methodology
The proposed method employs a transfer learning framework structured into three main phases: feature
transfer, structure adaptation, and discriminant optimization. The overall design incorporates advanced
approaches in multimodal integration and architectural adaptation, as established in prior studies [16], to
enable efficient transfer and specialization of knowledge for medical image recognition tasks. As depicted in
Figure 1, the process starts by extracting transferable features from a pretrained base network, proceeds with
network adaptation tailored to the distributional and structural characteristics of medical images, and
concludes with a discriminant optimization phase that utilizes multiple loss constraints to improve
recognition robustness in challenging environments. The specific steps for each phase are as follows:

Figure 1. Overall model architecture
First, a deep convolutional neural network pre-trained on a large-scale natural image dataset is selected as the
base model, and its front-layer parameters are retained to extract universal image features. Given an input
medical image x , an intermediate representation dRz is obtained through a pre-trained feature extractor

)(xf , namely:
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Where  represents the frozen or partially fine-tuned network parameters. In order to enhance the
adaptability of the model to the target task, a structural adjustment module is introduced on the migrated
features to improve the model's perception of small-scale, low-contrast lesions in medical images.
In the structural adaptation stage, the bottleneck transformation module is introduced to reduce the dimension
and reconstruct the intermediate features. The high-dimensional features are compressed into low-
dimensional expressions kRh through the learnable linear mapping matrix kdRW  . The formula is as
follows:

zWh T

This process not only reduces the complexity of the model, but also improves the response ability of the
subsequent discriminant layer to key features. In order to suppress the interference of redundant information,
a feature regularization term is also designed in the method to enhance the sparsity and discriminability of the
compressed features. The specific form is:

2
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Where 21, is the regularization coefficient, which controls the sparse constraint and structural smoothness
respectively.



In the discriminant optimization stage, a task-specific classification head )(hg is constructed, and the
output of the category probability is completed through the fully connected layer and the softmax activation
function. The final prediction result is expressed as:

)(softmax)( bhVhgy T  

Among them, V and b are learnable parameters. The entire model training process uses the cross entropy loss
function as the target optimization criterion, combining the migration features with the regularization term for
joint training. The complete loss function is defined as follows:

regcetotal LyyLL  ),( 

This method achieves a deep integration of migration features and medical tasks through an end-to-end
training process, effectively adapts to the needs of various medical image recognition scenarios, and has
strong scalability and application potential.

4. Dataset
This study uses the ChestX-ray14 dataset as the primary evaluation benchmark. The dataset consists of real
chest X-ray images and is widely used in various medical image recognition tasks. ChestX-ray14 contains
over 100,000 frontal-view chest X-rays, covering 14 common thoracic diseases. These include pneumonia,
lung nodules, cardiomegaly, and pneumothorax. The dataset has high clinical relevance and diverse image
content. All images have been standardized to a resolution of 1024×1024 pixels to facilitate input processing
and feature extraction by neural network models.
Each image in the dataset is annotated with disease labels, making it suitable for multi-label classification
tasks. The labels are extracted from radiology reports using automated text mining methods. Although the
labeling contains noise, it reflects the characteristics of real clinical environments. The dataset is imbalanced,
with some disease categories having relatively few samples. This presents a challenge for small-sample
recognition. Due to its widespread use in transfer learning and deep medical image recognition research,
ChestX-ray14 serves as a strong benchmark for model evaluation.
In addition, the ChestX-ray14 dataset is commonly used for comparing and validating model transfer
performance. It is publicly available and supports strong experimental reproducibility. Its large-scale image
volume and broad disease coverage make it suitable for evaluating model generalization under multi-class
and complex image conditions. The dataset also provides a solid foundation for future research directions
such as cross-domain transfer, weakly supervised learning, and uncertainty modeling.

5. Experimental Results
In the experimental results section, the relevant results of the comparative test are first given, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Accuracy AUC F1-Score

TransCheX[9] 83.7 0.914 0.824

Chest-Transformer[10] 85.1 0.927 0.836

ConvNeXt-Med[11] 86.4 0.934 0.847

MedViT[12] 87.2 0.942 0.858



Ours 89.0 0.953 0.873

The comparison results in the table show that the proposed method achieves significantly better performance
than other baseline models in medical image recognition tasks. It outperforms in three key metrics: Accuracy,
AUC, and F1-Score. Compared with earlier Transformer-based models such as TransCheX and Chest-
Transformer, our method improves accuracy by more than 5 percentage points. This indicates that the
proposed transfer strategy and structural optimization mechanism are more effective in handling the complex
textures and blurry boundaries typical of medical images.
In terms of AUC, which is a core metric for evaluating model discrimination, our model also achieves a
higher area under the curve. This reflects stronger robustness and generalization across different classification
tasks. The improvement is mainly attributed to the reconstruction and refinement of the feature layer structure
during transfer learning. This enables the model to better capture fine-grained information in lesion regions
while suppressing interference from irrelevant areas. In contrast, although ConvNeXt-Med shows strong local
modeling ability, it still falls short in capturing global dependencies in medical imaging.
The improvement in F1-Score further validates the advantage of our method in dealing with class imbalance
and few-shot scenarios. In medical image recognition, some disease categories have very few samples, which
often leads models to favor dominant classes during prediction. By introducing feature compression
mechanisms and regularization constraints under transfer learning, our method maintains overall
discriminative power while significantly enhancing recognition of minority classes. This results in higher F1
scores compared to existing models and indicates better clinical applicability and robustness.
Overall, the experimental results demonstrate the effectiveness and necessity of transfer learning in medical
image recognition. By designing structural adaptation modules and optimized decision paths, the proposed
model not only achieves comprehensive improvements across multiple evaluation metrics but also shows
good efficiency and deployability. These findings further highlight the vital role of transfer learning in
medical AI, especially for real-world scenarios where data is limited but accuracy requirements are high. This
work provides a methodological foundation for building efficient and intelligent medical diagnostic systems.
This paper further gives the impact of imbalanced category distribution on the model discrimination effect,
and the experimental results are shown in Figure 2.

Figure 2. The impact of imbalanced category distribution on model discrimination effect
The figure shows that as the degree of class imbalance increases, the model's performance on the F1-Score
drops significantly. This indicates that differences in class distribution have a strong impact on the



discriminative ability of medical image recognition models. Under the Balanced condition, the model can
effectively learn features from all categories, resulting in a higher F1 score. However, as the proportion of
dominant classes in the training set increases, the model's ability to recognize minority classes weakens,
leading to an overall decline in prediction performance.
Under Mild and Moderate imbalance conditions, the model performance decreases but still maintains a
certain level of robustness. This suggests that the proposed structure has some resistance to distribution shifts.
However, due to unresolved feature drift and data bias during transfer learning, the model starts to overfit
dominant classes. This suppresses its generalization ability on edge categories. In medical imaging tasks,
many critical disease types belong to minority classes. Once the model becomes biased toward major classes,
the risk of clinical misdiagnosis increases.
When the class distribution reaches the Severe imbalance level, the F1 score drops sharply. The model almost
loses its ability to recognize minority classes. This shows that under extremely imbalanced data conditions,
transfer learning alone cannot maintain discriminative performance. Although transfer learning helps
incorporate general visual knowledge, it fails to build proper semantic representations for rare categories
when class information is heavily skewed. This also reveals the limitations of current methods in modeling
small-sample categories.
In summary, these experimental results highlight the importance of addressing class imbalance in medical
image recognition tasks. While the model structure shows some adaptability and robustness, it still requires
targeted reweighting or generation strategies to enhance the representation of minority classes in severely
skewed conditions. Under the transfer learning framework, how to integrate the feature transfer ability of the
source task with the class distribution characteristics of the target task remains a key challenge for improving
model usability.

6. Conclusion
This study addresses common challenges in medical image recognition, including limited data, class
imbalance, and poor model generalization. An optimized method is proposed that integrates transfer learning
strategies. By introducing pretrained models and a structural adaptation mechanism, the method effectively
models and extracts key discriminative features from medical images. The designed discriminative
optimization path and regularization strategy further enhance model stability and accuracy in multi-class
settings. The approach shows strong task adaptability and general performance.
The experiments evaluate the method from several sensitivity perspectives. The results verify the model's
robustness in handling real-world challenges such as data perturbation, parameter tuning, and distribution
shifts. The method demonstrates promising applicability in real medical scenarios. It performs well in small-
sample lesion recognition and structural modeling under complex multi-modal inputs. This confirms the
significant value of transfer learning in medical image processing. Compared to conventional convolutional
models or single training strategies, the proposed method maintains high performance while reducing
dependence on large-scale labeled data. This makes it a practical solution for medical intelligence in
resource-constrained environments.
More importantly, the proposed method not only generalizes well in image recognition but also offers
insights for other medical AI applications. It can be integrated and extended as a core module in real-world
needs such as remote consultation, intelligent screening, and clinical decision support systems. Its lightweight
design and modular structure also support deployment on edge devices and low-power platforms. This
ensures wide applicability in practice.
Future work may further explore the combination of cross-modal knowledge transfer, class imbalance
mitigation, and data generation techniques. This could improve model adaptability in complex scenarios. At
the same time, enhancing interpretability and clinical validation while maintaining recognition performance
will be key to real-world implementation. As medical data resources expand and computing infrastructures



evolve, transfer learning-based medical image recognition is expected to play a greater role in diagnosis,
disease prediction, and health monitoring. This will support the development of more intelligent, accurate,
and efficient healthcare systems.
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