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Abstract: This paper addresses the limitations of traditional data mining methods in causal modeling and
structural awareness. It proposes a causal-enhanced data mining algorithm that integrates causal inference
with a graph attention mechanism. The method is grounded in causal structure learning. It first constructs a
causal graph among variables based on conditional independence constraints. This causal graph is then
embedded into a graph neural network framework to achieve structured representation of causal
relationships and high-order information aggregation. During the graph modeling process, a causal weight
control mechanism is introduced to regulate the strength of information flow between nodes. This allows the
model to adaptively capture key causal paths and significant dependencies. At the same time, an attention
mechanism assigns weights to neighboring nodes, enhancing the model's ability to identify important factors
within complex structures. In the optimization phase, the model jointly uses task-specific loss and a causal
consistency regularization term to improve its ability to fit the true causal structure. To verify the
effectiveness of the proposed method, experiments are conducted on datasets with clearly defined causal
structures. The evaluation focuses on multiple aspects, including structural error, inference accuracy, and
generalization capability. Comparative analyses are performed against several representative baseline
methods. The results demonstrate that the proposed approach achieves superior performance in structural
recovery, causal path identification, and predictive accuracy. These findings highlight the powerful capacity
of combining causal modeling with graph structure learning for modeling complex systems.
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1. Introduction
In the era of data-driven intelligent decision-making, data mining technologies have become essential tools
for information extraction, knowledge discovery, and predictive modeling across various fields. However,
traditional data mining methods often rely on statistical correlations and lack a deep understanding of causal
structures among variables. This limitation makes them vulnerable to hidden biases, leading to significant
constraints in interpretability, stability, and generalizability[1]. As data grows in dimensionality, dynamism,
and heterogeneity, correlation-based analysis alone is no longer sufficient to capture the underlying
mechanisms. Therefore, integrating causal inference theory with graph-based modeling techniques has
become a promising direction to enhance the reasoning and structural perception capabilities of intelligent
models[2].
Causal inference provides a methodological foundation to identify causal relationships, disentangle
confounding factors, and estimate the effects of interventions. Unlike conventional approaches that treat



correlation as the primary basis for inference, causal inference focuses on modeling data-generating processes.
It enables the separation of spurious associations and the discovery of stable causal pathways. This approach
not only improves model interpretability but also offers theoretical support for robust inference in
uncontrolled environments. In complex systems, causal graphs represent structured dependencies among
variables, naturally aligning with the integration of graph structure learning and attention mechanisms[3].
Meanwhile, the development of graph neural networks offers effective solutions for modeling non-Euclidean
structured data. In graph structures, nodes represent entities and edges denote relationships, which align well
with networked interactions observed in the real world. Graph attention mechanisms, a key variant of graph
neural networks, assign adaptive importance weights to neighboring nodes. This significantly enhances the
model's ability to capture heterogeneous relations and contextual dependencies. Incorporating graph attention
into data mining tasks helps highlight critical paths and salient features, especially in noisy, high-dimensional,
and sparse data, thereby enabling more accurate and efficient knowledge discovery[4].
The integration of causal inference and graph attention brings unprecedented flexibility and interpretability to
data mining tasks. Causal inference offers structural constraints and intervention modeling. Graph attention
adds the ability to focus adaptively within complex structures. Their combination allows the discovery of
deep dependencies among variables and improves model robustness under real-world challenges such as data
imbalance, feature redundancy, and distribution shifts. This fusion is especially advantageous in applications
requiring fine-grained modeling of policy effects, risk propagation, or influencing factors.
As the data-driven paradigm continues to evolve, exploring data mining methods that incorporate both causal
reasoning and structural awareness has become increasingly important for advancing the field. Traditional
approaches that rely heavily on statistical correlations often fall short in capturing the true generative
mechanisms behind observed data. By shifting the focus from mere pattern recognition to mechanism-based
understanding, causality-oriented methods allow for more reliable interpretation, improved generalization,
and greater resilience in dynamic or noisy environments. This transition marks a meaningful step toward
models that are not only accurate but also explainable and scientifically grounded.
Moreover, the integration of structural awareness through graph-based representations enables data mining
algorithms to better reflect the relational nature of real-world systems. Graph attention mechanisms further
enhance this capability by allowing models to adaptively prioritize relevant information and filter out noise
based on learned dependencies. Together, these advancements lay a robust theoretical and architectural
foundation for tackling complex data scenarios, such as those involving high dimensionality, heterogeneity,
or temporal dynamics. Causality-aware and graph-attentive frameworks thus offer a promising path toward
more intelligent, transparent, and robust decision-making systems that align closely with practical demands
across diverse application domains.

2. Prior Work
Existing data mining methods mainly focus on modeling and reasoning over large-scale data using statistical
learning and deep neural networks. Under this paradigm, researchers have widely adopted convolutional
networks, recurrent networks, and their improved variants for feature extraction and associative modeling of
time series, text, and graph data. These methods have achieved notable performance[5]. However, their core
logic is still based on the assumption that correlation implies causation. Due to the lack of causal modeling
capabilities, traditional models often fail to handle complex issues such as confounding variables, selection
bias, and counterfactual analysis. They also show poor generalization when facing distribution shifts or
external interventions. These limitations have driven interest in introducing causal inference mechanisms into
data mining to enhance model interpretability and robustness.
The development of causal inference theory offers a powerful and principled methodological foundation for
advancing data mining tasks beyond traditional correlation-based analysis. By leveraging causal graph-based
modeling, it becomes possible to represent the underlying dependencies among variables in a structured and



interpretable way. This framework allows researchers to go beyond surface-level associations and instead
reason about the actual generative mechanisms that produce the data. Tools such as do-calculus and
counterfactual analysis enable controlled reasoning about interventions, helping to distinguish causation from
mere correlation. This shift supports the construction of models that are not only more interpretable but also
more aligned with real-world causal processes[6].
In recent years, causal inference has been actively applied to several core areas within data mining, including
feature selection, representation learning, and predictive modeling. For instance, selecting features based on
causal relevance rather than statistical correlation can help mitigate the risk of including spurious or
redundant information, thereby improving model stability and interpretability. Additionally, in scenarios
involving biased or imbalanced datasets, causal inference techniques can guide the development of
adjustment strategies that correct for unfairness or distributional shifts. These capabilities highlight the role of
causal reasoning as a foundational element in building more robust, fair, and effective data-driven systems,
and they open up new possibilities for reliable intervention planning and decision support[7].
In graph-structured data modeling, the development of graph neural networks has accelerated the evolution of
relational data mining. Traditional graph convolutional methods can capture local adjacency patterns.
However, they often suffer from oversmoothing and limited representation power when modeling complex
relational heterogeneity and node importance. The introduction of graph attention mechanisms addresses
these bottlenecks. By assigning context-aware attention weights to each node, models can automatically
identify key paths and high-impact nodes in complex graph structures. This improves representation accuracy
and enhances performance in low-resource or weakly supervised settings. As a result, graph attention
mechanisms are becoming a core technique in relationally aware data mining tasks[8].
Current research is increasingly exploring the integration of causal inference and graph neural networks.
Some studies investigate how to identify latent causal relationships in graph structures or how to use graph
attention mechanisms to support causal structure learning and estimation. Based on these directions, data
mining methods are shifting from structure-agnostic causal modeling to structure-aware causal reasoning.
This transition aims to improve the accuracy and efficiency of causal discovery and intervention. Such
approaches are more aligned with the structural properties of real-world data and support finer-grained and
more trustworthy knowledge extraction for complex tasks. In summary, the integration of causal inference
and graph attention mechanisms has become a key trend and technical frontier in intelligent data mining.

3. Model Architecture
This study proposes a data mining algorithm that integrates causal reasoning with a graph attention
mechanism to improve the accuracy and interpretability of structure-aware inference. The overall framework
is composed of several key components: causal structure recognition is responsible for identifying underlying
causal dependencies among variables; graph modeling and feature propagation construct the relational graph
and enable contextual information flow across nodes; causal enhanced attention calculation dynamically
adjusts the importance weights of neighboring nodes based on inferred causal relevance; and the final
reasoning prediction module generates task-specific outputs using the aggregated and causally-informed
features. The complete model architecture and its component interactions are illustrated in Figure 1.
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structural learning method, where the node V represents a set of variables and the edge E represents a causal
dependency. On this basis, a scoring function based on conditional independence is used to evaluate the
candidate graph structure, such as BIC or a scoring criterion based on mutual information, and the optimal
graph structure is determined by maximizing the following objectives:

);(maxarg DGSG
CG



Where C is the allowed graph structure space, and S represents the structure scoring function.



After the graph is constructed, the input graph )',(' EVG  of the graph neural network is further
constructed based on the causal graph, where EE ' represents the valid edge set is obtained after causal
screening. In the node embedding calculation, the graph attention mechanism is used to perform weighted
aggregation on the neighbor information of each node. Let the initial representation of node i be )0(

ih . In the
l-th layer of graph attention propagation, the attention weight of neighbor node j to node i is defined as:
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Where Wa, is a learnable parameter, )(iN represents the neighbor set of node i, and || represents the
vector concatenation operation.
In the process of propagation, causal weights are also used to adjust the strength of information flow.
Specifically, the causal path strength is represented as ]1,0[ij , which is used to adjust the final weight
combination in the graph attention mechanism to obtain the causally enhanced node representation update
formula:
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Where )( is a nonlinear activation function is used, and ij can be calculated from structural information
such as path strength or betweenness centrality in the causal graph, thereby improving the model's
responsiveness to causal critical paths.

In the model output stage, the final node embedding )(L
ih is combined to predict the target variable through a

regression or classification head, and the optimization target is the joint loss function:

causaltasktotal LLL 

Where taskL is the loss of the main prediction task (such as cross entropy or mean square error), causalL is
the structural regularization term used to maintain causal consistency, and  is the balance coefficient. This
design achieves the deep coupling of causal structure and graph attention mechanism in the process of
information expression and optimization, providing the model with dual support for structural perception and
mechanism modeling.

Figure 1. Overall model architecture diagram



4. Experimental Data Description
The benchmark dataset used in this study is the Tianchi Healthcare Causal Discovery Dataset. This dataset is
constructed from electronic medical records and clinical test data collected in real-world healthcare settings.
It contains potential causal relationships among multiple structured variables. Each data sample includes
patient test indicators, diagnosis results, and intervention records at specific time points. The variables follow
a clear temporal order and exhibit causal dependencies, making the dataset suitable for tasks in causal
inference and structural modeling.
The dataset contains over twenty thousand samples and includes nearly one hundred clinically relevant
variables. These variables are distributed across multiple thematic subsets, such as liver function, kidney
function, and metabolic indicators. The variable types include continuous values, discrete labels, and some
timestamps. The data is highly heterogeneous and features multi-dimensional interactions, effectively
reflecting the complex dependency structures found in real-world medical decision-making. Some causal
paths between variables have been annotated using domain knowledge, which can serve as a reference for
evaluating the model's causal discovery capability.
The structural design, interpretability, and traceability of interventions make this dataset one of the
commonly used benchmarks in causal modeling research. It supports the learning of causal structures among
variables and provides an experimental foundation for integrating graph neural networks and attention
mechanisms in complex systems. Modeling on this dataset helps evaluate the effectiveness of algorithms in
handling high-dimensional, sparse, structurally complex, and semantically imbalanced data.

5. Results and Discussion
In the experimental results section, the relevant results of the comparative test are first given, and the
experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method SID SHD Precision Accuracy

DCDI[9] 28.5 42.1 0.762 0.788

BayesDAG[10] 24.3 38.7 0.784 0.805

DiBS[11] 22.7 35.4 0.801 0.819

SDCD[12] 19.8 31.2 0.829 0.841

Ours 15.4 27.6 0.862 0.867

The table shows that the proposed method significantly outperforms existing mainstream approaches in
causal structure modeling tasks. In particular, the method achieves 15.4 on Structural Intervention Distance
(SID) and 27.6 on Structural Hamming Distance (SHD), both considerably lower than those of the baseline
methods. These results indicate that the model demonstrates more stable and reliable performance in
recovering causal edges and maintaining intervention consistency. This advantage comes from the model's
accurate representation of causal relations and its effective suppression of incorrect connections during
structure learning.
In terms of the precision metric, the proposed method achieves 0.862, outperforming SDCD at 0.829 and
DiBS at 0.801. This further confirms the high reliability of the method in predicting causal edges. A higher
precision score suggests that the model can effectively distinguish true causal links from spurious correlations,
making it more practical in tasks such as intervention inference and mechanism modeling. The graph



attention mechanism plays a key role by dynamically focusing on important neighbor information and
enhancing the expressiveness of local reasoning.
The accuracy comparison also reflects the overall performance improvement of the proposed method. As the
model's structural reasoning ability increases, prediction accuracy rises steadily, from 0.788 in DCDI to 0.867
in the proposed method. This trend demonstrates a strong synergy between causal inference mechanisms and
structure-aware representation learning. Their combination improves the model's generalization ability and
decision stability on real-world data.
Overall, the experimental results validate the effectiveness of the proposed method across multiple
dimensions, including structural accuracy, causal edge identification, and final prediction performance. By
introducing causal structure learning and graph attention mechanisms, the model achieves not only superior
quantitative results but also a deep representation of causal principles in its algorithmic design. This provides
a solid foundation for causal reasoning and decision optimization in complex systems.
This paper also provides a detailed analysis of how different learning rate settings affect the performance of
the proposed model. By systematically adjusting the learning rate, the study investigates the sensitivity of the
model to this key hyperparameter, aiming to understand its influence on training stability, convergence
behavior, and the quality of causal structure learning. The analysis helps reveal the relationship between step
size and model generalization, particularly in the context of integrating causal inference with graph attention
mechanisms. The experimental setup, variation patterns, and observed dynamics under different
configurations are presented in Figure 2 to support this investigation.
The figure shows that different learning rate settings have a clear impact on model performance. Accuracy
first increases and then decreases. With lower learning rates such as 1e-5 and 5e-5, the model performs
poorly. This may be due to limited parameter updates, which lead to slow convergence and weak ability to
escape local optima. This phenomenon indicates that in a complex structure combining causal inference and
graph attention mechanisms, learning rate plays a crucial role in structural alignment and causal path
identification.
When the learning rate is set to 1e-4, the model achieves the best performance. This suggests that this setting
strikes a good balance between stability and learning speed. At this point, the causal graph structure and the
graph neural network can optimize cooperatively with a reasonable step size. The model performs well in
both causal relationship modeling and graph structure representation. This also confirms that under graph
attention control, moderate-weight updates help the model identify key dependencies and improve prediction
accuracy.

Figure 2. Analysis of model performance changes under different learning rate settings



However, when the learning rate increases to 5e-4 and 1e-3, model performance begins to decline. The
possible reason is that a larger step size causes instability or overfitting during training. This may lead to
biased learning of the causal structure and reduced reasoning accuracy. In particular, within the causal
estimation module, a high learning rate may disrupt the stability of the attention distribution and weaken the
model's responsiveness to key paths.
This paper further presents a robustness analysis of causal graph modeling under varying edge density
settings to explore how structural complexity influences model behavior. By modifying the density of
connections in the graph, the study examines the model's ability to maintain accurate causal inference across
sparse to dense topologies. This analysis aims to evaluate the sensitivity of the proposed framework to
structural noise, redundant paths, and varying levels of dependency information. It also provides insights into
the interaction between graph connectivity and the effectiveness of attention-based reasoning. The
experimental setup and corresponding visualizations are illustrated in Figure 3.

Figure 3. Robustness of causal graph modeling under different edge density graph structures
The figure shows that the performance of causal graph modeling exhibits a clear nonlinear trend under
different edge density settings. As the edge density increases from 0.10 to 0.30, the model's accuracy steadily
improves, reaching a peak of 0.862. This trend indicates that a moderate edge density helps build an accurate
causal structure. It provides sufficient dependency information for the graph neural network, enriches the
representation of causal paths, and improves overall inference accuracy.
After the edge density reaches 0.30, further increases in connectivity begin to reduce model performance.
Although performance remains relatively high at 0.40, there is a noticeable drop when the density reaches
0.50. This suggests that too many edges introduce noise or redundant paths, which interfere with the ability of
the graph attention mechanism to focus on key causal relations. As a result, the structure becomes less
distinguishable, and the significance of causal paths is weakened. The instability of overly dense structures
also reflects the model's sensitivity to graph topology complexity.
From the region labeled as the "performance-stable zone" in the figure, the model shows strong robustness
when edge density is between 0.20 and 0.40. This indicates that the method maintains consistent and reliable
causal inference under moderate structural density. The result confirms a strong coupling between causal
information estimation and graph structure. Sparse graphs may lead to insufficient information, while dense
graphs can cause overfitting and misleading propagation.
In summary, the experimental results highlight the robustness of the causal graph modeling algorithm under
varying structural complexity. By carefully controlling edge density, the model can improve causal discovery
and generalization performance in complex systems. This finding provides important guidance for future
graph structure design and structural awareness tuning mechanisms. It also demonstrates the controllability
and adaptability of modeling strategies that integrate causal inference with graph attention mechanisms.



This paper also gives the impact of the time window length on the causal information estimation ability, and
the experimental results are shown in Figure 4.

Figure 4. The impact of time window length on the ability to estimate causal information
The trends in the three subplots clearly show that the time window length has a significant impact on causal
information estimation. Both SID and SHD, two structural error metrics, consistently decrease as the window
length increases from 5 to 20. This indicates that within a wider time range, the model can capture more
stable causal structures and paths, leading to more accurate causal graph reconstruction. The downward trend
suggests that short windows may result in incomplete causal relations or insufficient dependency information,
limiting the graph neural network's capacity for structural modeling.
This effect is especially evident in the SHD curve. As the window length increases, the number of incorrect
connections and missing edges decreases significantly. This suggests that within a reasonable temporal span,
the model can better identify true causal links between variables and avoid misjudgments caused by local
noise or short-term shifts. The simultaneous decline in SID confirms this observation from an intervention
perspective, showing improved accuracy in the causal semantics of intervention predictions. Larger windows
allow the model to approximate the global true structure more effectively.
The precision curve shows an initial rise followed by a slight drop, with the optimal point occurring at a
window length of 20. This indicates that overly short windows may lead to information loss, while
excessively long windows may introduce irrelevant or redundant dependencies, reducing discriminative
power. This pattern reflects the sensitive role of information truncation in the proposed architecture. It affects
attention distribution, node aggregation, and causal path extraction.
In conclusion, the experimental results validate the influence of temporal modeling range on causal
information estimation. An appropriate window length enhances the model's ability to capture causal
dependencies and maintain contextual consistency. This significantly improves the accuracy of structure
recovery and intervention prediction. The results further demonstrate the strength of the proposed method in
handling temporally sensitive causal structure modeling. They also offer practical guidance for choosing
parameters when designing more robust temporal causal modeling mechanisms.

6. Conclusion
This paper proposes a data mining algorithm that integrates causal inference mechanisms with graph attention
networks to address the problem of combining causal structure modeling and graph representation learning.
The method builds on the strengths of traditional graph neural networks in modeling structural dependencies,
while introducing causal structure learning and causal information enhancement. As a result, the model is not
only capable of identifying correlations among variables but also able to recognize causal paths and estimate
intervention effects. Through a multi-module design, the framework supports the full pipeline of causal-
enhanced representation learning, including causal graph generation, structural modeling, causal weight



estimation, and final prediction. This provides a complete algorithmic pathway for causal modeling in
complex data environments.
On the experimental side, the proposed model is systematically evaluated across multiple dimensions, such as
structural error and prediction accuracy. Results show that it outperforms existing mainstream methods in
terms of structural recovery and reasoning stability. These findings confirm the effectiveness of the causal-
guided graph modeling strategy and highlight the critical role of the attention mechanism in identifying
causal paths. The model is not only suitable for standard causal structure recovery tasks but also shows strong
adaptability and scalability in high-dimensional, heterogeneous, and dynamic settings with complex causal
dependencies.
This study contributes to the advancement of causal inference, graph learning, and structured intelligent
modeling. It shows strong potential for practical applications in fields such as financial modeling, medical
analysis, behavior prediction, and intelligent decision-making. By enhancing the interpretability and
robustness of causal modeling algorithms, the proposed method provides technical support for real-world
systems that need to handle heterogeneity, identify key causal pathways, and optimize decision strategies. In
addition, the framework serves as a general architecture template for integrating causal learning with deep
neural networks and demonstrates good cross-task transferability.

7. Future Work
Future research can be extended in several directions. These include the introduction of dynamic causal
graphs to model structural changes over time, the integration of multimodal data to capture more complex
causal relationships, and the incorporation of counterfactual generation mechanisms to improve performance
in intervention prediction and policy optimization. Furthermore, exploring more robust causal learning
strategies under real-world challenges such as missing data and incomplete labels will be an important area of
focus. The ultimate goal is to build structurally intelligent systems that unify reasoning ability, generalization
capacity, and interpretability to meet the needs of diverse practical applications.
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