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Abstract: This paper proposes a large model alignment algorithm based on parameter-efficient fine-tuning
and structured adapter gating to address the difficulty of balancing performance and efficiency under
resource constraints and complex environments. The method introduces low-rank updates and gating control
modules into the backbone of large models, enabling fine-grained selection of feature flows and suppression
of irrelevant information through the dynamic adjustment of sparse adapters. Compared with traditional full
fine-tuning, it significantly reduces training and inference costs while maintaining high alignment quality
and robustness across diverse environments. Systematic experiments under hyperparameter sensitivity,
environmental constraints, and data noise show that the method achieves superior results on key metrics
such as ROC-AUC, F1-Score, and parameter efficiency, with strong stability and adaptability in semantic
noise and conflict feedback scenarios. Additional experiments under computational and memory limits
confirm the flexibility of structured gating in resource utilization, while results under reduced training
samples and sparse labels highlight its robustness in weakly supervised settings. Overall, the proposed
approach balances accuracy and efficiency in alignment, providing a feasible technical path for deploying
large models under complex conditions.
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1. Introduction
With the widespread application of large-scale pre-trained models in various tasks, model alignment has
gradually become a key step for their effective deployment. Although the pre-training stage allows models to
capture rich linguistic or multimodal knowledge from large-scale general data, they often show insufficient
generalization, unstable responses, or poor adaptability in specific tasks and environments. Therefore, how to
achieve efficient, controllable, and reliable alignment without damaging the original capabilities of the model
has become a frontier issue of concern to both academia and industry. In particular, as model size continues
to expand, traditional full fine-tuning methods bring excessive costs in computation, storage, and
communication. These limitations highlight the importance of parameter-efficient fine-tuning and structured
alignment techniques[1].
The concept of parameter-efficient fine-tuning was proposed to break through the bottlenecks of traditional
methods. By updating only a subset of parameters or introducing low-rank incremental modules, such
methods significantly reduce the computational resources and storage required for training, while preserving
the knowledge and capabilities of the original model. In practice, this approach improves the flexibility of
transferring models across tasks and adapting quickly to new domains. It also provides feasible solutions for
cross-domain applications and collaborative scenarios. However, current methods still face challenges in



aligning with complex task objectives[2]. They often lack sufficient expressive power and structural
coordination. Without effective gating and adaptation mechanisms, the alignment process may fall into
overfitting or redundancy, which compromises overall performance.
Against this background, the introduction of structured adapter gating mechanisms provides new
opportunities for model alignment. Adapters are lightweight structures that integrate new task information in
a modular way while keeping the backbone parameters frozen. Structured gating further enhances their
selectivity and controllability. The model can dynamically regulate information flow according to input
features and task requirements. This design effectively suppresses interference from irrelevant features. It
also maintains consistency and robustness across tasks and domains, leading to a more interpretable and
generalizable adaptation process. By combining parameter-efficient fine-tuning with structured gating,
models can achieve high-quality alignment at low cost and gain stronger extensibility[3].
The significance of this research lies not only in methodology but also in its broad application value. On one
hand, parameter-efficient fine-tuning combined with structured adapter gating offers a practical solution for
deploying large models in resource-constrained environments. It enables small and medium-sized
organizations to adopt advanced models for innovation[4]. On the other hand, this direction supports the
sustainable development of large models in complex scenarios. It includes cross-domain knowledge transfer,
multimodal collaborative understanding, and dynamic balance across tasks. By improving the efficiency and
effectiveness of alignment, large models can better adapt to diverse environmental demands, reduce
deployment costs, and enhance the reliability and controllability of intelligent systems[5].
In summary, the study of large model alignment algorithms based on parameter-efficient fine-tuning and
structured adapter gating addresses key challenges of applying large-scale models in practice. It enriches the
theoretical system of model alignment in academia and provides a new paradigm for building efficient,
lightweight, and controllable artificial intelligence in practice. This approach is expected to promote a
transition from general pre-training to precise adaptation. It will expand the value of large models in a wider
range of applications and have a profound impact on the popularization and advancement of artificial
intelligence[6].

2. Related work
Current research on large model alignment can be broadly divided into two paths. One relies on full fine-
tuning, where all parameters are updated on data from specific tasks or domains, enabling stronger
adaptability in target scenarios. The other emphasizes lightweight and efficient approaches, where backbone
parameters remain frozen and task information is injected only into partial modules. The former has
advantages in expressive power but involves very high training and deployment costs, making flexible
transfer across multiple scenarios difficult. The latter significantly reduces resource consumption but suffers
from limited adaptation ability, which hinders stable performance in complex tasks. This contradiction has
driven the development of parameter-efficient fine-tuning methods, shifting the research focus from purely
pursuing performance to balancing efficiency and scalability[7].
In parameter-efficient fine-tuning, researchers have explored various low-cost modules, such as low-rank
decomposition, pluggable structures, and local re-parameterization. These designs aim to reduce the number
of trainable parameters and improve training speed. Such methods reduce hardware dependency and increase
flexibility for cross-task adaptation[8]. However, they often focus on single-point optimization and lack
global control of information flow at the structural level. As a result, although training efficiency improves,
problems remain in handling task conflicts or achieving cross-domain alignment. Knowledge transfer may be
insufficient, or feature interference may become excessive. Therefore, finding a balance between low
parameter overhead and structural adaptation ability has become an important research topic[9].
To address the limitations of structural adaptation, adapter mechanisms have been widely introduced in
model alignment. Adapters act as lightweight intermediate layers. They extend models by incrementally



injecting structure without altering backbone parameters. Compared with traditional fine-tuning, adapters
provide modularity, composability, and plug-and-play advantages, supporting flexible switching and transfer
across tasks[10]. However, most existing adapters rely on fixed information transmission and lack dynamic
adjustment according to task requirements. In multi-task or cross-domain scenarios, static adapter paths often
lead to redundant computation and irrelevant feature interference. This restricts the generalization and
stability of the model. It also highlights the need to introduce gating mechanisms that endow adapters with
stronger dynamic control[11].
The rise of structured gating mechanisms has opened new directions for parameter-efficient fine-tuning and
adapter methods. By introducing gates into information pathways, models can automatically adjust the
strength and direction of information flow based on task inputs. This enables more selective feature
utilization. It not only improves the robustness of the alignment process but also reduces interference caused
by redundant features. The model can maintain more stable performance in complex environments. At the
same time, structured gating mechanisms support more reasonable path allocation for multi-task sharing and
cross-domain alignment. They help achieve a new balance between efficiency and performance. Therefore,
combining parameter-efficient fine-tuning with structured adapter gating has become a key direction for
breakthroughs in model alignment. It also provides a solid foundation for building intelligent systems that
emphasize both controllability and efficiency[12].

3. Method
This study introduces a large model alignment algorithm based on parameter-efficient fine-tuning and
structured adapter gating to address the limitations of efficiency and structural adaptability in cross-task
transfer and domain adaptation. The method freezes the backbone parameters of the pre-trained model while
introducing lightweight adapter structures and gating mechanisms to enable selective regulation and dynamic
adjustment of information flow. The overall framework can be regarded as a constrained optimization
process in a shared latent space. Parameter-efficient fine-tuning ensures sparsity and low-rank updates,
reducing computational and storage costs, while the structured gating mechanism guarantees effective multi-
level semantic transmission of features, thereby achieving stability and controllability in alignment. The
model architecture is shown in Figure 1.

Figure 1. Framework of Parameter-Efficient Fine-Tuning with Structured Gating for Alignment Robustness

First, let the input be represented as a sequence vector set  TxxxX ,..., 21 , and extract the initial feature
representation )0(H through the frozen pre-trained model backbone network:
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Where enc∵ represents the fixed backbone parameter and dTRH )0( represents the basis.

In the process of efficient parameter fine-tuning, a low-rank decomposition adapter weight update mechanism
is introduced. Specifically, for each layer's transformation matrix W , the following form is adopted:

TUVW  , rdRU  , rdRV 

Among them, dr  ensures the low rank and high efficiency of the updated parameters. The update is
added to the backbone output in the form of residual:

)( )1()1()( WHHH lll   

Where )( is a nonlinear activation function used to improve expression ability.

To achieve dynamic regulation during the alignment process, a structured gating mechanism is introduced.
The gating factor t is adaptively generated by the input features and is used to adjust the flow intensity of
information between different paths:
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Under this mechanism, the updated representation of the adapter can be formalized as:

);()1( )1()1()( Whhh l
tt

l
tt

l
t   

Where )( represents the feature map after the adapter transformation. This design ensures the controllable
flow of information and avoids redundant propagation.

Finally, to achieve task alignment and representation consistency, an objective function is introduced,
combining task-specific loss and regularization constraints:
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Where taskL is the task-related loss term, 2

F
W is used to limit the norm scale of the adapter update, and

)(KL constrains the gating distribution to ensure selective stability.

Through the above design, this method achieves multi-level feature adaptation and dynamic gating control
while ensuring computational efficiency, which can effectively improve the alignment ability of large models
between different tasks and fields, and lay a solid foundation for subsequent applications.

4. Experimental Results
4.1 Dataset
This study uses the HelpSteer AI Alignment Dataset as the main experimental source. The dataset contains
large-scale human feedback and preference annotations, which can be used to model the consistency and
stability of instruction– response pairs. Within the proposed framework, it is treated as a benchmark for
testing alignment robustness by introducing factors such as label sparsity and feedback noise to simulate
alignment anomalies in complex systems. Accordingly, evaluation metrics originally applied in anomaly
detection, such as ROC-AUC and F1, are used to measure model performance under alignment robustness.

The HelpSteer dataset has a structured annotation system that supports reward modeling and multi-objective
optimization. Specifically, the response samples include not only positive examples but also contrastive
samples with progressive difficulty or intentional bias. This allows researchers to construct positive and



negative pairs within a unified framework and to perform consistency constraints and gated regularization
modeling. Its multidimensional annotation mechanism aligns well with the proposed alignment framework
and provides direct training evidence for the selective control of gating modules and the sparse updating of
adapters.

The choice of this dataset is due to its strong representativeness, clear structure, and wide coverage. It can
effectively verify the controllability and generalization ability of the proposed method in complex semantic
alignment scenarios. It also reflects the challenges brought by instruction diversity and preference
differences in real interactive environments. Therefore, this dataset provides a solid experimental foundation
for evaluating the effectiveness of parameter-efficient fine-tuning and structured gating mechanisms.

4.2 Experimental Results
To validate the effectiveness of the proposed method, we selected recent models that have shown strong
performance in representation robustness and anomaly-style evaluation as baselines. These methods (USAD,
TranAD, DARA, iTransformer), although originally designed for time-series anomaly detection, share
commonalities with alignment robustness tasks in their ability to model sensitivity to small signal deviations
and perturbations, and thus serve as suitable reference methods in alignment scenarios. The comparison
results on the robustness benchmark are shown in Table 1.

Table1: Comparative results on alignment robustness benchmarks

Model ROC-AUC (%) F1-Score (%) Param-Eff (M params)

USAD[13] 89.7 87.1 30.0

TranAD[14] 90.5 89.0 50.0

DARA[15] 90.8 88.9 5.00

iTransformer[16] 91.2 88.5 45.0

Ours 92.6 90.8 6.00

From the overall results, the proposed method outperforms the baseline models across multiple evaluation
metrics. This shows that the design based on parameter-efficient fine-tuning and structured adapter gating
achieves superior performance in alignment robustness evaluation tasks. Compared with structures such as
iTransformer and TranAD, the method demonstrates clear advantages in both ROC-AUC and F1 scores. This
reflects the effectiveness of structured gating in suppressing irrelevant features and enhancing sensitivity to
alignment inconsistencies. The results also indicate that even under complex temporal patterns, dynamic
adjustment of information flow through gating enables the model to more accurately discriminate different
alignment inconsistencies.
In terms of parameter efficiency, the method shows lightweight characteristics similar to DARA, yet achieves
higher performance than DARA and several other models. By contrast, iTransformer and TranAD have
strong representational power but require large parameter sizes, which limits their applicability in resource-
constrained environments. The proposed approach introduces low-rank decomposition and adapter update
mechanisms, allowing the model to reduce parameter numbers significantly while maintaining or even
surpassing the robustness evaluation performance of larger models. This directly addresses the core
challenges of high computational costs and deployment difficulties faced in practical applications of large
models.



Further comparison with other models shows that traditional autoencoder-based USAD performs reasonably
in unsupervised settings but struggles to align with complex temporal behaviors and to capture long
dependencies. In contrast, the proposed method combines parameter-efficient updates with structured
adaptation paths, giving the model stronger adaptability when learning multi-scale patterns. The gating
mechanism plays a key role by mitigating noise and redundant feature interference, which improves
generalization while keeping complexity low.
Overall, the experimental results confirm the central idea of this study. By combining parameter-efficient
fine-tuning with structured adapter gating, the method reduces model costs while achieving more precise
alignment and robust anomaly robustness evaluation performance. It not only provides a new paradigm for
unsupervised alignment robustness evaluation but also lays a solid foundation for applying large models in
complex system environments. The demonstrated advantages suggest that the combination of lightweight
design and controllability will be a key direction for advancing model development in large-scale alignment
and cross-scenario transfer tasks.
This paper also conducted a comparative experiment on the hyperparameter sensitivity of the trainable
parameter ratio and memory usage to the alignment quality. The experimental results are shown in Figure 2.

Figure 2. Hyperparameter sensitivity of trainable parameter ratio and memory usage to alignment quality
The results show that the ROC-AUC metric increases monotonically with the proportion of trainable
parameters. This indicates that with more parameter updates, the model can better capture temporal features
and robustness patterns. It demonstrates the potential of parameter-efficient fine-tuning in enhancing the
representation ability of large models. It also shows that the adapter and gating mechanisms maintain stable
performance improvements under parameter expansion without clear overfitting or failure.
The F1-Score shows a peak-shaped trend. It reaches the highest value at a moderate proportion of trainable
parameters but declines when the proportion is too low or too high. This indicates that it cannot support
effective discrimination of complex alignment inconsistencies. Too many parameters, on the other hand, may
cause redundant updates and feature interference, which weaken the selective effect of the gating mechanism.
This observation aligns with the idea of structured adapter gating proposed in this study. A balance between
update strength and feature filtering is required to achieve optimal alignment robustness performance.
The Param-Eff metric rises sharply with the proportion of trainable parameters, showing a nonlinear growth
trend in resource consumption and model complexity. As the proportion increases, the parameter scale
expands rapidly, while the relative performance gains diminish. This highlights the advantage of the proposed
method. It achieves efficient alignment through gating and adapter structures under limited parameter cost
and avoids the computational and storage burden of full fine-tuning.
By combining the three metrics, it is clear that the proposed method improves alignment robustness accuracy
while balancing performance and efficiency through gated control and sparse parameter updates. The steady
rise of ROC-AUC contrasts with the steep growth of Param-Eff, while the peak pattern of F1-Score reveals



the key role of gating in preventing overfitting and maintaining generalization. These trends confirm that the
combination of parameter-efficient fine-tuning and structured adapter gating provides unique value in
practical alignment robustness scenarios.
This paper also analyzes the data performance of gated learning with the reduction of training sample size
and label sparsity. The experimental results are shown in Figure 3.

Figure 3. The impact of training sample size reduction and label sparsity on the data performance of gated
learning

The results show that the ROC-AUC metric declines gradually as the training sample size decreases and label
sparsity increases. This indicates that with insufficient supervision signals, the overall alignment robustness
ability of the model is inevitably affected. However, the decline is relatively smooth, reflecting that the gating
mechanism can still maintain robustness under highly sparse supervision. This demonstrates that the
structured adaptation path proposed in this study can stably allocate limited parameter resources to support
discrimination performance when data are insufficient.
The F1-Score exhibits a peak trend, being highest at medium training sample size and moderate sparsity, but
lower at both extremes. Under these balanced conditions, the model achieves the best trade-off between
precision and recall. When training data are abundant, performance declines due to overfitting and
diminishing returns. When data are highly scarce, performance drops because of the imbalance in positive
and negative samples under sparse supervision. This result shows that the gating module has an optimal point
when regulating feature utilization. It can effectively suppress redundant updates and enhance alignment
inconsistency capture.
The Param-Eff metric increases significantly as the sample size decreases and the label sparsity rises. This
indicates that under insufficient supervision, the gating mechanism activates more trainable parameters to
compensate for the lack of labels. This reflects the adaptive nature of structured adapters in resource
utilization. They expand effective parameter channels to maintain modeling capacity for complex patterns.
However, combined with performance metrics, it is clear that more parameters do not always bring
continuous performance gains. This shows that a dynamic balance between efficiency and effectiveness is
needed.
Taken together, the three metrics reveal the sensitivity of gated learning to data conditions. Under limited
labels and reduced samples, the method achieves stable degradation instead of abrupt collapse by combining
parameter adaptation and selective control of gating paths. The different trends of the metrics highlight the
complementarity of the method in global alignment, fine-grained discrimination, and resource allocation.
They also confirm the effectiveness of combining parameter-efficient fine-tuning with structured gating in
data-constrained scenarios.
This paper also evaluates the environmental sensitivity of structured gating robustness under computational
quota and memory constraints. The experimental results are shown in Figure 4.



Figure 4. Environmental sensitivity of structured gating robustness under computational quota and memory
constraints

The results show that the ROC-AUC metric increases monotonically with higher computation and memory
resources. This indicates that the proposed structured gating method achieves stronger global representation
and alignment robustness performance when more resources are available. The trend also suggests that
although the gating mechanism can maintain basic performance under limited resources, its context modeling
and temporal capture ability are further enhanced when computational and storage constraints are relaxed.
The F1-Score reaches a peak under medium to high resource conditions but decreases when resources are
extremely low or extremely high. This peak-shaped variation reveals the sensitivity of the gating mechanism
in feature utilization. When resources are insufficient, feature representation becomes limited, leading to
lower recall. When resources are abundant, excessive parameter updates may introduce redundant
information or overfitting risks, which disrupt the balance between precision and recall. This observation
aligns closely with the idea of sparse adapter updates proposed in this study, highlighting that moderate
computational and storage conditions are more favorable for stable model performance.
The Param-Eff metric increases steadily with more resources. This shows that under larger computational and
memory budgets, the gating mechanism activates more trainable parameter channels to support complex
feature modeling. The trend indicates that the method is highly adaptive, as it flexibly increases parameter
utilization when resources improve. This enhances the depth and capacity of the model. Compared with
traditional full fine-tuning, this gradual expansion ensures a balance between resource use and performance,
which is consistent with the core goal of parameter-efficient fine-tuning.
Taken together, the three metrics demonstrate that the structured adapter gating mechanism exhibits
differentiated adaptability under different resource conditions. It maintains basic alignment performance
under low resources, achieves optimal balance under medium resources, and shows strong scalability under
high resources. This flexibility not only enhances the applicability of the method in real deployments but also
further verifies the robustness of combining parameter-efficient fine-tuning with gating in handling
environmental sensitivity.
Next, this study conducted experiments on the environmental sensitivity of alignment stability under different
hardware instruction sets and batch size settings. The experimental results are shown in Figure 5.
Under different hardware instruction sets and batch sizes, the ROC-AUC metric shows a rise followed by a
decline. This indicates that when computational support is strong, the global representation ability of the
model is better expressed, leading to higher alignment robustness accuracy. However, when the batch size
becomes too large or the instruction set shifts to a lighter architecture, the model’s ability to capture
anomalies decreases. This suggests that the structured gating mechanism remains sensitive to uneven
resource allocation, especially under high-throughput configurations where fine-grained alignment robustness
evaluation is disrupted.



Figure 5. Alignment stability sensitivity under different hardware instruction sets and batch size settings
The F1-Score performs best under medium batch sizes and efficient instruction sets, but it is relatively
weaker under very small or very large batch sizes. This reflects that under certain resource configurations, the
model achieves a good balance between precision and recall. When resources are limited, recall declines.
When parallelism is excessive, gradient noise or update conflicts may reduce precision. These results
highlight the critical role of the gating paths in regulating feature utilization and suppressing redundancy.
The trend of Param-Eff is noticeably different. Resource utilization decreases under some instruction sets but
rises again in lighter architectures. This indicates that the gating mechanism adapts parameter selection to the
variation in instruction sets and batch sizes. It dynamically adjusts the scale of effective channels to handle
different computational and memory pressures. This non-monotonic trend reflects the adaptive advantage of
structured adapters in resource-constrained environments while also revealing their sensitivity to diverse
hardware conditions.
Taken together, the three metrics show that the proposed parameter-efficient fine-tuning and structured gating
method achieves both stability and flexibility under diverse hardware and batch configurations. ROC-AUC
and F1 reflect changes in alignment quality and discrimination ability. Param-Eff reveals how the gating
strategy reallocates parameter resources in different environments. The results indicate that the method
maintains efficiency while adapting to the constraints of varying hardware and training settings.
Finally, this study analyzes the alignment robustness data under semantic noise and conflict feedback
injection, and the experimental results are shown in Figure 6.
As the level of semantic noise increases, the ROC-AUC metric shows a continuous decline. This indicates
that the structured gating method proposed in this study is affected in terms of alignment robustness and
consistency ability when facing interfering information. The decline is expected, since strong noise weakens
the consistency of feature signals and context, making it difficult for the model to maintain stable global
judgments. However, the curve is relatively smooth, showing that the gating mechanism can partially resist
noise disturbance, which reflects its robustness.
The F1-Score reaches a peak under moderate noise levels but is relatively lower under both low and high
noise conditions. This “middle-optimal” pattern suggests that moderate perturbation can help the gating
structure avoid overfitting and improve generalization. When noise becomes excessive, however, the balance
between precision and recall is disrupted, leading to a clear performance drop. This phenomenon indicates
that there is an optimal interval in the dynamic feature selection process of gating. Within this interval,
effective information is maximized, and redundant feature interference is reduced.
The Param-Eff metric increases gradually with higher conflict feedback rates. This indicates that under
stronger feedback conflicts, the gating module activates more adapter parameter channels to maintain overall
performance. This trend reveals the adaptive nature of structured adapters. When task signals are unstable,
the system increases parameter usage to offset uncertainty, thereby maintaining stable outputs in complex



feedback environments. Compared with traditional methods, the gating mechanism dynamically allocates
parameter resources according to the environment, showing strong flexibility.

Figure 6. Data visualization of alignment robustness under semantic noise and conflicting feedback injection
By combining the three metric trends, it can be seen that under the joint influence of semantic noise and
conflict feedback, the robustness of alignment shows both inevitable performance degradation and the
adaptive compensatory capacity of the gating structure. The gradual decline of ROC-AUC, the peak change
of F1-Score, and the steady increase of Param-Eff together indicate that parameter-efficient fine-tuning
combined with structured gating can maintain stability under multi-source disturbances. At the same time, it
dynamically balances performance and resource utilization, which represents the core value of the proposed
method in alignment tasks.

5. Conclusion
This study focuses on parameter-efficient fine-tuning and structured adapter gating, and proposes a large
model method that achieves high-quality alignment even under resource constraints and complex
environments. By introducing sparse updates and gating control mechanisms, the model maintains low
parameter cost while showing significant improvements in alignment robustness, stability, and controllability.
The performance across different experimental settings further verifies the adaptability and stability of the
method under hyperparameter sensitivity, data noise, and label sparsity, and computation and memory
constraints. It provides a new perspective to address the common challenges of high cost and low portability
in large model applications.
The experimental results show that the method achieves a balance between performance and efficiency across
multiple evaluation metrics. It also maintains reasonable outputs in the presence of complex noise and
conflicting feedback. This not only demonstrates the effectiveness of the proposed framework but also
indicates that the model has strong adaptability when facing real-world challenges such as semantic
perturbation, inconsistent feedback, and hardware heterogeneity. Such adaptability is especially important for
large-scale distributed systems, cross-domain data analysis, and real-time monitoring. In these scenarios,
environments are often dynamic and uncontrollable, and balancing stability with computational cost is a key
issue for advancing the deployment of large models.
At the same time, the structured gating mechanism shows unique advantages in resource optimization. It can
flexibly adjust parameter usage according to actual computational and storage conditions, avoiding the
resource waste of traditional full fine-tuning. By dynamically expanding or shrinking adapter channels, the
method enables the model to operate not only in high-performance hardware environments but also in
resource-constrained edge devices. This provides strong technical support for deploying large models in areas
such as intelligent manufacturing, financial risk control, medical diagnosis, and complex human–computer
interaction, and it is expected to drive the wider adoption and deeper application of these technologies.



6. Future Work
Looking ahead, the combination of parameter-efficient fine-tuning and structured gating still offers broad
research opportunities. Future work may study its applicability to cross-modal tasks, extending to multimodal
fusion in vision, language, and speech. It may also explore its role in federated learning and privacy-
preserving frameworks, providing low-cost and secure solutions for collaborative training. In addition,
integrating dynamic scheduling strategies and more advanced adaptive mechanisms will be important to
allow models to adjust online according to task demands and environmental states in real deployments. These
directions will not only advance theoretical research but also enhance the practical value of large models
across a wider range of applications.
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