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Abstract: This paper addresses the challenges of protocol behavior anomaly detection in high-
concurrency heterogeneous systems, including structural complexity, semantic heterogeneity, and the
absence of labeled data. It proposes an unsupervised anomaly detection method based on a request semantic
graph autoencoder. The method transforms raw protocol requests into structured semantic graphs by
modeling entity associations and semantic dependencies, then applies a graph autoencoder to extract node
embeddings and reconstruct structural information to capture latent behavioral deviations. A semantic
perturbation view is introduced alongside a consistency regularization term to enhance embedding stability
and semantic alignment. To evaluate the method's effectiveness, experiments are conducted under various
protocol fusion and structural disturbance settings, analyzing factors such as encoder depth, embedding
dimension, anomaly ratio, and graph depth. The results demonstrate that the proposed approach achieves
stable and superior performance across multiple unsupervised anomaly detection metrics, effectively
characterizing structural patterns and distributional anomalies in protocol behaviors with strong adaptability
and discriminative capability in complex systems.

Keywords: Semantic graph modeling; graph autoencoder; protocol behavior modeling; unsupervised
anomaly detection

1. Introduction

In modern distributed systems and cloud computing platforms, service components collaborate through
various communication protocols, forming complex request paths and interaction behaviors. As system scale
continues to expand and business logic grows in complexity, protocol-level behaviors exhibit high
heterogeneity, dynamic evolution, and multi-stage dependencies. At the same time, abnormal behaviors are
becoming increasingly concealed. They may manifest as subtle changes in request content or deviations in
behavioral patterns within protocol sequences. These challenges render traditional rule-based or single-metric
detection approaches ineffective, making it difficult to accurately identify potential risks in backend service
systems[1].

Protocol behavior serves as a critical representation of system operational states. It not only carries
interaction semantics between services but also implicitly reflects behavioral paths related to task scheduling,
state transitions, and logic execution. Deep modeling and semantic understanding of protocol-level behaviors
help reveal the root causes and propagation mechanisms of anomalies from a global perspective. However,
due to the high-dimensional sparsity, structural complexity, and semantic misalignment of protocol data, it
remains a major research challenge to build a modeling framework that can effectively express protocol
semantics and accommodate heterogeneous behavioral features. Especially under unsupervised or weakly



supervised settings, capturing anomalous deviations during behavioral evolution and enhancing sensitivity
and generalization in anomaly detection remain critical technical bottlenecks.

In recent years, semantic graphs have emerged as a unified representation that integrates structural
information and contextual semantics, and have been increasingly adopted in behavior modeling and system
analysis tasks. By constructing node entities and semantic relational edges from protocol requests, semantic
graphs with topological structures can be generated, enabling structured modeling of complex behavioral
sequences[2]. Based on this, employing a graph autoencoder framework for semantic graph representation
learning allows for preserving local dependencies while capturing global behavioral patterns. This approach
alleviates the curse of dimensionality inherent in raw request data and provides more semantically
discriminative embeddings for anomaly detection, offering technical support for identifying potential threats
effectively.

Moreover, backend anomalies often involve localized behavioral perturbations, abnormal cross-node
interactions, or nonlinear shifts in periodic patterns. These complexities demand that detection models
possess strong structural modeling capabilities and semantic consistency. Constructing protocol semantic
graphs provides a unified paradigm for representing abnormal behaviors. This enables models to mine
potential anomaly clues in protocol behaviors from multiple levels and perspectives. Through the propagation
mechanism inherent in graph structures, the model can capture the transmission paths of anomaly signals
across nodes, uncovering deep dependencies and behavioral variations that are difficult to detect using
traditional methods[3]. This facilitates more intelligent risk perception for maintaining the stability of
backend systems.

In summary, anomaly detection targeting protocol behaviors holds significant theoretical value and practical
importance for ensuring the stability, security, and maintainability of modern backend systems. As distributed
systems become increasingly complex and service interactions grow in scale and heterogeneity, detecting
subtle anomalies at the protocol level has emerged as a critical challenge. Protocol behaviors inherently
encode rich semantic and structural information, reflecting the underlying operation logic, state transitions,
and service dependencies of a system. Effectively identifying deviations within such behaviors can provide
early warning signals for potential faults or intrusions, enabling proactive system protection and operational
resilience[4].

With the continuous accumulation of multi-source observational data-including system logs, invocation
traces, network packets, and protocol request flows-there exists a growing opportunity to construct a unified,
semantically meaningful representation that captures both structural patterns and contextual semantics. In this
context, developing a modeling framework based on request semantic graph autoencoders becomes highly
promising. This approach allows for the transformation of raw protocol data into structured semantic graphs,
from which latent abnormal patterns and behavioral irregularities can be uncovered without the need for
labeled data.

2. Related work

In the field of system anomaly detection, researchers have extensively explored methods based on multi-
source data such as logs, metrics, and invocation traces. Traditional approaches often rely on static rules,
clustering, or statistical feature analysis. These methods were initially effective in meeting basic detection
needs. However, with the continuous evolution of distributed system architectures, the interaction logic
among backend components has become increasingly complex. Anomalous behaviors have also evolved to
exhibit dynamic characteristics, contextual dependencies, and cross-phase correlations. These changes
present major challenges to traditional techniques, which struggle to capture subtle anomaly signals hidden in
complex behavioral patterns. In particular, when dealing with large-scale protocol data, traditional methods
are prone to high rates of missed detections and false alarms[5].



To address these challenges, researchers have begun to adopt deep learning approaches, especially those
involving sequence modeling and graph-based learning, to achieve more semantically rich modeling of
system behavior sequences. For example, sequence modeling methods based on recurrent neural networks
and attention mechanisms aim to capture temporal dependencies and contextual relationships within protocol
behaviors. These approaches have demonstrated certain advantages. However, sequence models are
inherently limited in their ability to model structural dependencies. They often fail to fully capture the
complex interaction paths and semantic structures among entities in protocol requests. This limitation is
particularly evident in multi-stage request processes or heterogeneous protocol integration scenarios, where
the representational power of sequence models becomes insufficient[6].

Building on this, graph neural networks have gradually been introduced into protocol behavior modeling and
anomaly detection tasks. By abstracting requests, responses, and operations as nodes and constructing
semantic edges among them, it becomes possible to form a semantic graph that represents the entire
behavioral process. Graph neural networks have a natural advantage in capturing high-order dependencies
and contextual information between nodes. They are effective in extracting key features from behavioral
structures and in modeling anomaly propagation paths. However, most existing methods still operate in
supervised or semi-supervised settings, requiring a large amount of labeled data for training. This makes them
unsuitable for real-world scenarios where labels are scarce or entirely unavailable[7].

To tackle the problem of structural anomaly detection under unsupervised conditions, graph autoencoders
have shown increasing modeling potential as a framework for low-dimensional embedding learning. These
models use an encoder to extract latent representations of protocol semantic graphs, and a decoder to
reconstruct the graph structure or adjacency relationships. Without relying on labeled data, graph
autoencoders can learn the distributional characteristics of nodes and edges, enabling the identification of
anomalous structures that deviate from global behavioral patterns[8]. When integrated with multi-view
generation, perturbation-based augmentation, and contrastive learning strategies, these methods further
enhance discriminative ability and robustness in protocol behavior modeling. As a result, they offer a more
general and flexible solution for backend anomaly detection.

3. Method

The network architecture is built upon semantic graphs constructed from protocol requests. It first employs a
graph autoencoder to embed the original graph structure, enabling high-order aggregation of node features
and semantic compression. A lightweight perturbation mechanism is then used to generate perturbed
embedding views, and a consistency constraint is introduced to enhance the model's robustness and
discriminative ability for abnormal behavior. The overall framework unifies structure reconstruction and
embedding consistency under unsupervised conditions, providing structure-aware and semantically aligned
representations for high-quality anomaly detection in backend protocol behaviors. The model architecture is
shown in Figure 1.

This study proposes a protocol behavior anomaly detection method based on a request semantic graph
autoencoder. The raw backend protocol data is first parsed into structured behavioral representations, where
nodes represent request entities and edges denote semantic relationships between protocol elements. By
embedding semantic information from fields such as parameters, paths, and methods, and performing entity
abstraction, a unified graph-based representation is constructed. This representation not only preserves the
structural characteristics of behavior but also captures contextual dependencies at the semantic level,
providing a robust foundation for subsequent graph representation learning.
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Figure 1. Semantic-Aware Graph Encoder for Protocol Behavior Detection

In the graph structure modeling stage, a graph autoencoder framework is designed to perform unsupervised
embedding learning on the protocol semantic graph. The encoder part uses a graph convolution structure to
extract the local context information of each node and realizes the aggregation and fusion of high-order
adjacent features through a multi-layer propagation mechanism. Let G =(V,E) trepresents the protocol

semantic graph, where V7 is a collection of nodes, £ 1is an edge set. Then the node v, €V representation
is updated as follows:
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Where N(i) represents the neighbor set of node i, c¢; is the normalization coefficient, w s the
weight matrix of the /th layer, and o is the activation function.
To enhance the model's robustness to local perturbations and its ability to model structural consistency, a
decoder is introduced to reconstruct the connection relationship between nodes. By minimizing the difference

between the original image adjacency matrix A and the reconstructed matrix A , the encoder is guided to
learn a discriminative graph embedding. The reconstruction mechanism is defined as follows:
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In addition, to improve the sensitivity of the embedding space to abnormal behavior, a perturbation
consistency regularization term is introduced. Specifically, a slight perturbation is introduced into the
protocol semantic graph to generate a pseudo view, and the original embedding and the perturbation
embedding are required to maintain semantic consistency. Let the original embedding be Z and the

perturbation embedding be Z ; then the consistency loss is defined as:
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The final optimization goal combines reconstruction loss and consistency loss to achieve unified modeling of
structural information compression and behavioral feature extraction through joint training. The overall loss
function is defined as follows:
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Where A is a balancing hyperparameter that controls the weight relationship between structural
reconstruction and semantic consistency. This method can extract discriminative patterns in protocol
behaviors under unsupervised conditions and provide stable and robust representation support for backend
anomaly detection.

4. Experimental Results
4.1 Dataset

This study adopts the MAWILab network traffic dataset as the foundational data source for protocol
behavior modeling and anomaly detection. The dataset is collected from real backbone network routers on
the Internet. It captures request behaviors across various communication protocols, including TCP, UDP,
and ICMP, and reflects typical backend service interaction characteristics. Anomalies are labeled through
cross-validation by multiple detectors, covering various types of abnormal patterns such as port scans, data
injection, and denial of service. This provides a reliable basis for modeling anomalies in complex scenarios.

In the data preprocessing stage, key behavioral fields are extracted, including the packet five-tuple (source
IP, destination IP, source port, destination port, and protocol type), session timing, traffic direction, and
packet size. Each communication request is abstracted into nodes and edges in a graph, constructing a
request semantic graph. This preserves the temporal order, interaction behavior, and semantic dependencies
of protocol activities, enabling structured graph modeling. In this graph, nodes represent communication
entities, and edges capture semantically related protocol interactions, forming a complete representation of
protocol behavior.

To support the unsupervised representation learning required by the model, the processed semantic graph
samples are used without explicit labels during training. Anomaly labels are introduced only during the
evaluation phase to assess detection performance. The dataset contains diverse protocol behavior patterns
and structural heterogeneity, effectively supporting the modeling requirements of the proposed backend
anomaly detection framework based on request semantic graph autoencoders.

4.2 Experimental Results

This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Tablel: Comparative experimental results

Model F1 Score AUC Precision KS Score
Ours(SAGE-Detect) 0.872 0911 0.854 0.683
GDN[9] 0.791 0.842 0.765 0.538
Anomaly Transformer[10] 0.804 0.861 0.779 0.557
Timeautoad [11] 0.769 0.828 0.754 0.521




NeuTral[12] 0.782 0.837 0.746 0.534

Based on the experimental results, the proposed SAGE-Detect outperforms the baseline models across
multiple key metrics. It demonstrates stronger capabilities in protocol behavior modeling and anomaly
identification. The F1 score reaches 0.872, showing an improvement of over 8% compared to the traditional
graph-based model GDN. This indicates a higher overall discriminative ability in capturing semantic graph
structures and abnormal behavior features.

In terms of precision, SAGE-Detect achieves a score of 0.854, surpassing existing Transformer-based
anomaly detection models such as Anomaly Transformer and Timeautoad. This reflects its advantage in
semantic consistency modeling and filtering of pseudo-anomalies. These improvements are attributed to the
designed graph autoencoder framework and the perturbation consistency mechanism, which effectively
suppresses non-structural noise in protocol behavior and improves the accuracy in identifying localized
anomalies.

From the perspective of structural consistency, SAGE-Detect achieves a KS score of 0.683, which is
significantly higher than other models. This result indicates that the semantic graph modeling enhances the
discriminative power of feature representations and improves the model's sensitivity to structural anomalies.
Compared to methods that rely solely on sequential modeling, this approach exhibits stronger expressiveness
in capturing complex structural changes across stages and entities in protocol paths.

In summary, the proposed model integrates request semantic graph construction with unsupervised graph
autoencoder training to produce more expressive structural embeddings. This effectively enhances anomaly
detection sensitivity and stability. Under highly heterogeneous and dynamically evolving backend systems,
the method shows strong adaptability and practical value, validating the effectiveness of structure-aware
modeling and consistency constraints in anomaly detection tasks.

This paper also experiments on the synergistic impact of encoder depth and detection performance in multi-
protocol heterogeneous scenarios. The experimental results are shown in Figure 2.
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Figure 2. The synergistic impact of encoder depth and detection performance in multi-protocol
heterogeneous scenarios

The experimental results show that as the depth of the encoder increases, the anomaly detection performance
of the model in multi-protocol heterogeneous scenarios first improves and then stabilizes. When the encoder
has only one layer, the AUC score is relatively low. This indicates that the model has limited ability to
capture high-order structural dependencies and complex interaction relationships in the protocol graph. The
embedding representation is insufficient, making it difficult to accurately model the structural characteristics
of anomalous behaviors.



When the encoder depth reaches three layers, the model achieves the highest AUC score. This suggests that
the graph autoencoder at this depth effectively integrates semantic associations across different protocol types
and generates more discriminative node embeddings. The enhanced representation captures cross-protocol
path features among requests, which strengthens the model's ability to recognize anomaly distributions in
complex structures.

However, when the depth increases to four or five layers, model performance slightly declines. This may be
caused by overfitting or over-smoothing due to excessive network depth. As a result, node representations
become homogenized and lose local structural distinctions. This degradation reduces the separability of
anomalous nodes in the embedding space and weakens the model's overall discriminative power.

This paper also conducts comparative experiments on the cross-sensitivity of node embedding dimension,
anomaly injection ratio, and detection accuracy. The experimental results are shown in Figure 3.
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Figure 3. Cross-sensitivity experiment on node embedding dimension, anomaly injection ratio, and detection
accuracy

The experimental results show that the node embedding dimension has a significant impact on anomaly
detection performance. This trend remains highly consistent under different anomaly injection ratios. When
the embedding dimension increases from 32 to 128, the AUC score rises significantly. This suggests that
lower dimensions cannot fully capture the complex structural dependencies and semantic relationships in the
protocol semantic graph, limiting the model's ability to identify anomalous behaviors. With higher
dimensions, the model can capture more high-order graph features, enhancing its capacity to model weak
anomaly signals in cross-protocol interaction patterns.

Under a 5% anomaly injection setting, the model achieves its highest AUC value of 0.892 with a 128-
dimensional embedding. This indicates that this embedding size offers optimal semantic compression and
behavior separation in low-interference environments. When the embedding dimension further increases to
256 and 512, performance slightly declines. This may be due to the enlarged representation space introducing
redundancy, which results in sparser embeddings and weakens the graph autoencoder's ability to distinguish
anomalous samples during node comparison.

In high anomaly ratio settings, such as 20%, the overall detection performance slightly decreases. This
reflects the model's reduced ability to discriminate boundary samples when the proportion of anomalies
increases. Nonetheless, the model maintains strong robustness at 128 and 256 dimensions, indicating that the
semantic graph autoencoder relies on a moderately sized embedding space to preserve semantic consistency
and structural stability when modeling imbalanced data.

This experiment further validates the cross-sensitivity between node embedding dimension and anomaly ratio.
It highlights the importance of setting an appropriate embedding size in highly heterogeneous protocol
scenarios. A suitable embedding space not only strengthens the model's representation of protocol behavior



features but also maintains structural separability of anomalous nodes under varying levels of anomaly
injection. This is essential for ensuring the stability and accuracy of backend anomaly detection.

This paper also analyzes the coupling relationship between the embedding dimension and the decoding and
reconstruction capability under the condition of multi-source protocol fusion. The experimental results are
shown in Figure 4.
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Figure 4. Coupling between Embedding Dimension and Reconstruction Ability under Multi-Protocol Fusion

The experimental results indicate that, in the context of multi-source protocol integration, the node
embedding dimension has a clear impact on the decoder's structural reconstruction capability. As the
embedding dimension increases from 32 to 128, reconstruction accuracy continues to improve. This suggests
that a moderate expansion of the embedding space helps the graph autoencoder capture high-order
interactions and structural features across multiple protocols. As a result, the model can more accurately
restore the topological structure and semantic dependencies of the original graph. This process enhances the
overall modeling capacity of protocol behavior and provides a foundation for high-quality anomaly detection.

When the embedding dimension is set to 128, the model achieves its best reconstruction performance. This
indicates that, in a multi-protocol integration setting, this configuration preserves essential structural features
while reducing redundancy in the embedding space. It produces stable and discriminative representations.
However, further increasing the embedding dimension to 256 and 512 leads to a slight drop in performance.
This suggests that redundant features interfere with the decoder's ability to recover key structural patterns.
This high-dimensional sparsity is more evident in heterogeneous protocol graphs, highlighting the importance
of embedding dimension control in preserving structural integrity.

In addition, high-dimensional embeddings may introduce semantic drift. This is especially critical in multi-
source protocol integration, where the semantic boundaries between different protocol types become less
distinct. An overly large embedding space may lead to confusion between features of different protocols,
weakening the decoder's perception of local structure. This effect is particularly noticeable at the 512-
dimensional level, suggesting that graph autoencoders should avoid unnecessary representational redundancy
when modeling protocol-level behaviors.

Finally, this study tested the comprehensive performance of graph structure depth and abnormal ratio changes
in high-concurrency heterogeneous systems, as shown in Figure 5.

The experimental results show that graph structure depth has a significant impact on anomaly detection
performance. In high-concurrency heterogeneous protocol systems, the number of graph propagation steps
directly affects the model's ability to capture cross-node behavioral dependencies. As the graph depth
increases from one to three layers, the F1 score consistently improves across all anomaly injection ratios.
This indicates that shallow graph models are insufficient to cover long-range dependencies in protocol
behavior paths. Increasing the propagation range helps the model access richer contextual information and
enhances its ability to detect global anomaly features.
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Figure 5. Comprehensive Evaluation of Graph Depth and Anomaly Ratio in Heterogeneous High-
Concurrency Systems

At a depth of three, the F1 score reaches its peak under all three anomaly ratios. This suggests that the graph
autoencoder achieves a better balance between semantic expressiveness and structural generalization. In
complex scenarios involving concurrent multi-protocol interactions, a three-hop neighborhood can effectively
cover key nodes and routing boundaries in protocol behavior paths. It preserves upstream and downstream
semantics in the structure and enables high-quality modeling of anomaly propagation paths.

When the depth increases to four and five layers, detection performance gradually decreases, with a slight
drop in F1 score. This may result from over-smoothing caused by excessive graph propagation. Node
representations become more homogeneous, reducing the model's ability to express local structural
differences. In protocol behavior graphs, deeper propagation may also introduce structural noise. In protocol
subgraphs with weak connections and sparse boundaries, too much neighbor information may interfere with
the discriminative quality of embeddings.

Changes in anomaly ratio also affect overall performance. As the ratio increases from 5% to 20%, the model
remains stable but shows a slight performance drop. This suggests that the graph autoencoder retains strong
robustness even under high anomaly interference. The embeddings integrate structural information from
multi-protocol behaviors through multi-hop propagation. As a result, the model maintains structural
discriminative power to some extent. These findings confirm the coupled effect between graph depth and
anomaly ratio.

5. Conclusion

This study proposes an unsupervised detection method based on request semantic graph autoencoders for
protocol behavior modeling and backend anomaly detection in multi-protocol heterogeneous systems. The
approach transforms raw protocol requests into structured semantic graphs. It applies a graph autoencoder
framework to learn node embeddings and reconstruct structural information. A consistency-based
perturbation mechanism is introduced to improve the robustness and discriminative power of the embeddings.
The overall architecture integrates structural awareness, semantic compression, and anomaly representation.
It effectively captures hidden abnormal patterns in backend systems without labeled data, demonstrating
strong adaptability and generalizability.

The experimental design evaluates the model's stability and effectiveness across multiple dimensions. These
include protocol structure modeling, embedding space construction, and dynamic changes in graph topology.
Sensitivity analyses are conducted on encoder depth, embedding dimension, anomaly injection ratio, protocol
fusion intensity, and system concurrency scale. The results reveal the coupling relationships among graph
depth, input semantic complexity, and model robustness. They demonstrate that modeling based on request
semantic graphs can accurately recover multi-source behavior paths in complex systems and improve the
granularity of anomaly identification.



This study introduces a new paradigm that combines structure-driven modeling with semantic alignment for
protocol-level anomaly detection. It overcomes the limitations of traditional methods based on log or metric
analysis. The proposed approach offers theoretical and technical support for system security operations,
distributed tracing, and network intrusion detection. In domains such as industrial internet, financial backend
services, and cloud platform scheduling, where system stability is critical, the method shows high application
potential. It can be integrated as a core component of behavior modeling and anomaly detection within
existing monitoring systems.

6. Future Research

Future research may further extend the proposed model to support cross-protocol transfer learning,
multimodal data integration, and collaborative modeling in federated environments, to meet the demands of
more complex and dynamic system operations. In multi-protocol systems, significant differences exist in
structural hierarchies, semantic expressions, and interaction mechanisms. Designing transfer strategies with
structural abstraction and semantic alignment capabilities can improve the model's adaptability across
different protocol types. As the need for integrating logs, metrics, traces, and network traffic continues to
grow, building a unified graph representation framework to jointly model semantic correlations across
modalities will enhance the model's perception of behavioral evolution. In practical deployments, large-scale
systems and heterogeneous computing environments raise new challenges. Improving online update
efficiency and cross-node deployment performance will be essential for enabling cloud-edge collaboration.
Designing autoencoder architectures with incremental learning capability and low communication overhead
can support continuous modeling and fast response in dynamic systems. In addition, incorporating causal
inference mechanisms to capture stable dependencies in protocol behaviors, integrating graph attention
mechanisms to strengthen the representation of anomaly-sensitive structures, and applying adaptive
perturbation strategies to regulate embedding disturbances can further improve the model's overall
performance in structural modeling, anomaly localization, and generalization robustness. These directions
will provide structurally aware and semantically expressive techniques for intelligent system operations and
maintenance.
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