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Abstract: This paper addresses the risk of privacy leakage during the fine-tuning of large language
models in sensitive scenarios by proposing a differential privacy mechanism that integrates task-aware
perturbation and modular structural injection. The mechanism consists of two components: Task-aware
Differentially Private Fine-tuning (TDPF) and Modular Privacy-aware Injection (MPI). TDPF dynamically
adjusts the intensity of gradient perturbation based on semantic sensitivity scoring, guiding the model to
adaptively optimize its update path under differential privacy constraints. MPI injects structured noise into
key substructures of the model and uses modulation factors to precisely control the perturbation intensity
across different modules, thereby enhancing semantic consistency while maintaining structural stability. A
series of systematic experiments is conducted to evaluate the proposed method across multiple dimensions,
including privacy budget sensitivity, injection frequency, and modulation strength. The results show that the
method significantly improves multi-task adaptability and semantic representation integrity while
maintaining privacy budget efficiency. It effectively alleviates the performance-structure conflict present in
traditional differential privacy strategies, demonstrating advantages in structural friendliness, controllable
performance, and robust privacy protection.

Keywords: Differential perturbation strategy, structural injection mechanism, semantic preservation, and
interference control capability

1. Introduction
With the continuous advancement of large-scale pre-trained language models, their application value in high-
sensitivity domains such as healthcare, finance, and public services has become increasingly prominent. As
pre-trained models transition from static corpora to task-specific fine-tuning, a key challenge arises: how to
ensure efficient task adaptation while protecting user data privacy. In multi-turn continual learning and multi-
source heterogeneous data settings, privacy risks introduced during fine-tuning may compromise model
security and trustworthiness. These risks also directly affect system compliance and ethical responsibilities[1].
Therefore, building secure fine-tuning mechanisms that balance representation capacity and privacy control is
essential for deploying large language models in real-world, high-risk scenarios[2].
However, most existing fine-tuning strategies focus on parameter efficiency, computational cost, or transfer
generalization. They often overlook the semantic exposure and re-identification risks of original samples
during fine-tuning. Some studies have adopted differential privacy mechanisms, but most apply static
perturbation schemes[3]. These fail to dynamically adjust noise based on task semantics, leading to
performance degradation and inefficient privacy budget usage. Moreover, current differential privacy
methods lack structural sensitivity modeling for complex and highly semantic model architectures. This



limits their ability to control semantic flow at a fine-grained level and reduces the practicality and scalability
of differential privacy in large model fine-tuning[4,5].
To address these issues, this study proposes a differential privacy fine-tuning mechanism that integrates task-
aware perturbation control and modular structural injection[6]. At the global level, the method introduces a
semantic sensitivity-guided perturbation strategy along the gradient path. At the structural level, it applies
modular perturbation adjustment and injection control within the model. This joint approach enables
coordinated optimization of privacy protection and representation preservation during fine-tuning. The design
does not rely on additional label supervision and enhances representational stability and structural robustness
in multi-task continual learning. The method is scalable and compatible with various Transformer-based
models. It can be flexibly deployed in task systems of different scales and complexities[7].
The main contributions of this work include two aspects. First, a Task-aware Differentially Private Fine-
tuning (TDPF) mechanism is proposed. It dynamically adjusts the noise intensity for each sample based on
semantic gradient sensitivity scoring, enabling differentiated optimization paths under privacy constraints.
Second, a Modular Privacy-aware Injection (MPI) structure is designed. It constructs structure-aware
perturbation pathways within the model to ensure local representational stability and semantic coherence
during fine-tuning. These two mechanisms form a dual-layer privacy control framework, from global
optimization to local representation. The proposed approach provides a new technical pathway and
theoretical support for controllable fine-tuning of large language models in privacy-sensitive tasks[8,9].

2. Related work
2.1 Privacy-Preserving Fine-tuning of Large Language Models
As large language models are increasingly deployed in real-world applications, privacy concerns during the
fine-tuning phase have emerged as a key research focus. In domains such as finance, healthcare, and law,
training data used in fine-tuning often contains private user information[10]. The model may unintentionally
memorize sensitive content during learning, which can later be exposed through fragments or semantic cues
in downstream inference. This issue is more severe in large models due to their vast parameter space and
powerful representation capacity, making it easier for them to reconstruct input data with high fidelity.
Traditional fine-tuning methods generally lack structural constraints on data privacy. They cannot prevent the
model from retaining unnecessary information while adapting to tasks. As a result, the model may achieve
strong generalization but still carry significant risks of privacy leakage[11,12].
To address these risks, recent studies have begun exploring the integration of privacy-preserving techniques
into the fine-tuning process. One common approach is to constrain the model's parameter updates to avoid
direct exposure of sensitive gradient information[13]. These methods often apply gradient perturbation,
weight clipping, or low-rank approximation to reduce reliance on individual samples while maintaining task
performance. Some works have also proposed replacing conventional parameter tuning with lightweight
adaptation methods. This includes inserting micro-modules or freezing parts of the model to reduce
invasiveness[14]. While these strategies enhance privacy control to some extent, they usually lack formal
guarantees and remain vulnerable to active or inference-based attacks.
Beyond parameter constraints and structural adaptations, some approaches aim to improve privacy protection
by redesigning the training process. For example, in multi-task learning or domain adaptation tasks, sample
reweighting or task selection mechanisms are used to reduce overfitting on outliers. This can indirectly lower
the model's sensitivity to specific samples[15,16]. Other studies introduce techniques such as model
distillation and pseudo-label learning. These leverage auxiliary models or unlabeled data to optimize training
without direct access to sensitive inputs. Although these methods provide new directions for privacy-aware
training, they often lack rigorous privacy metrics and fail to establish verifiable safety boundaries in
practice[17].



To overcome these limitations, differential privacy has emerged as a promising formal framework for secure
fine-tuning of large language models. Some studies have embedded differential privacy into training and
fine-tuning workflows by injecting noise into gradient updates. This helps prevent the model from
memorizing individual samples from a statistical perspective. However, practical implementations still face
several challenges. These include performance degradation, slower convergence, and increased tuning
complexity. In multi-turn or dynamic task fine-tuning scenarios, it is particularly difficult to manage privacy
budget consumption and control gradient drift. Balancing task utility and strong privacy protection has
therefore become a central challenge in designing privacy-preserving fine-tuning mechanisms[18].

2.2 Efficient Differential Privacy Mechanisms in Deep Learning
Differential privacy is one of the most theoretically grounded privacy protection mechanisms in deep learning.
Its core idea is to introduce random noise during training to limit the model's dependence on any single
training sample. This prevents attackers from inferring whether a specific sample was used by observing
model outputs. The mechanism provides mathematically verifiable privacy guarantees and has been widely
applied across tasks. It shows strong adaptability in high-sensitivity environments. However, applying
differential privacy directly to deep neural networks remains highly challenging. The complexity and high
dimensionality of deep models make it difficult to balance privacy budget control and performance
degradation. In addition, the non-convex optimization and rapid parameter shifts during training may lead to
instability or even training failure when noise is added. Therefore, efficient differential privacy mechanisms
tailored to deep structures are urgently needed to maintain privacy control and model performance
simultaneously[19,20].
To address these challenges, various optimization strategies based on differential privacy have been proposed.
Among them, the most representative is the differentially private stochastic gradient descent (DP-SGD)
algorithm. This algorithm clips the gradient of each mini-batch and adds Gaussian noise to reduce the
influence of individual samples on the update direction. However, DP-SGD has high computational costs in
large-scale models and multi-round training[21,22]. The frequent gradient updates significantly increase the
demand for memory and computation. Privacy accounting mechanisms are also required to monitor and
manage the overall privacy budget, further increasing implementation complexity. In natural language
processing tasks, applying DP is even more difficult due to the discrete nature of text and the nonlinear
semantic relationships. Noise injection may conflict with semantic consistency and functional expression.
Designing differential privacy strategies suitable for structured language modeling remains a key research
challenge in private deep learning.
In practice, some studies aim to improve the efficiency and usability of differential privacy by introducing
ideas such as structural compression and local perturbation. These methods inject noise only into sensitive
parameters or critical modules, reducing the impact on the entire network. They often combine parameter
sharing, low-rank projection, or modular training to reduce noise propagation and computational redundancy.
At the same time, they preserve performance on the main task. Other works design DP-friendly training
architectures, such as hierarchical perturbation, task-aware clipping, and learnable noise injection modules.
These methods enable fine-grained privacy control and adaptive tuning[23]. They improve noise efficiency in
theory and enhance the privacy-performance trade-off in large-scale training in practice. This helps bridge the
gap between differential privacy as a theoretical concept and its real-world engineering applications.
At the same time, increasing demand for privacy protection is pushing differential privacy mechanisms
toward task-adaptive and context-aware designs. Current studies are introducing scene-aware privacy
modeling. This includes task relevance analysis and data sensitivity metrics to guide the intensity and strategy
of noise injection. The goal is to enable customized and differentiated privacy protection. Emerging
paradigms such as multimodal learning, federated optimization, and generative modeling further expand the
scope of differential privacy. These approaches allow deployment beyond single-task and single-model
settings. They enable flexible privacy protection across heterogeneous data sources and complex
communication structures. These technical developments are moving differential privacy from algorithm-



level improvement toward system-level and task-level collaborative design. This provides a forward-looking
direction for privacy protection in deep learning systems[24].

3. Method
This paper proposes a secure fine-tuning framework for large language models by integrating differential
privacy mechanisms, aiming to address the conflict between privacy protection and performance
degradation during model adaptation. The approach introduces two core innovations. First, a Task-aware
Differentially Private Fine-tuning (TDPF) mechanism dynamically adjusts the intensity and frequency of
gradient perturbations based on task-specific privacy risk assessment. It incorporates semantic sensitivity,
module dependency, and contextual importance of training samples to map privacy budget to task
contribution. This improves the controllability and adaptability of privacy protection. Second, a Modular
Privacy-aware Injection (MPI) structure injects differential noise into specific sub-networks such as
attention layers, embedding layers, or adapter modules. It avoids unnecessary disturbance to the global
parameter space and enhances the transparency and stability of privacy injection. The modular design
supports flexible deployment across models of various sizes. Through the synergy of TDPF and MPI, the
proposed framework reduces reliance on sensitive data while improving security and privacy robustness in
real-world applications. The overall model architecture is shown in Figure 1.

Figure 1. Overall model architecture
3.1 Task-aware Differentially Private Fine-tuning
This study proposes a Task-aware Differentially Private Fine-tuning (TDPF) mechanism designed to
enhance the adaptability and representational capacity of large language models while ensuring the privacy
of training data. The mechanism introduces task-related sensitivity scheduling and perturbation control
strategies during training, making differential privacy an active component of the model optimization
process rather than a passive protection tool. Unlike traditional static noise injection methods, TDPF
dynamically adjusts perturbation intensity based on the gradient contribution and semantic importance of
each input sample. This enables fine-grained privacy control and task-aware optimization path selection.
The mechanism avoids excessive perturbation of irrelevant features and preserves the modeling of critical
semantic paths without significantly increasing computational overhead. TDPF also exhibits strong
compatibility with modular injection structures and can be flexibly applied to various large model fine-
tuning scenarios. The overall architecture of the mechanism is illustrated in Figure 2.



Figure 2. TDPF Model Architecture

First, the standard differential privacy mechanism can be expressed as the following perturbative gradient
update form:
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Where tg represents the original gradient of the step t , C is the gradient clipping threshold, N is the
zero-mean Gaussian noise distribution, and  controls the privacy strength. In the task-aware scenario, we
introduce a sample-level weight factor i to weight the gradient according to the impact of the sample on
task performance. The expanded weighted perturbation form is:
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To measure the task contribution of each sample, this paper designs a sensitivity scoring function based on
semantic gradient alignment:
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Where ， represents the vector dot product, Ltask is the current task objective function, and  is the
smoothing factor. This scoring function can effectively identify key samples that contribute significantly to
model optimization in the current training round and provide stronger perturbation protection during privacy
injection.

In the overall optimization process, the objective function of TDPF consists of task loss and privacy
regularization term, which are defined as follows:



DPtaskTDPF RLL  

Where  is the balance coefficient, and the privacy regularization term DPR represents the penalty term
of the overall perturbation scale in the parameter space, which is specifically expressed as:
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This loss function plays a key structural role in TDPF. It guides the distribution of privacy perturbation
through semantic alignment strategies, preventing damage to core features. It also uses a regularization term
to dynamically constrain the magnitude of noise, ensuring training stability and controllability. The
mechanism works closely with Modular Privacy-aware Injection (MPI). While TDPF constructs the global
perturbation strategy and gradient optimization path, MPI applies structured noise injection within specific
submodules. Together, they form a unified fine-tuning framework that balances task adaptability and
differential privacy protection.

3.2 Modular Privacy-aware Injection
This study proposes a Modular Privacy-aware Injection (MPI) mechanism to address the structural
interference caused by uniform noise injection in differential privacy training. The mechanism introduces
localized perturbations into key functional modules of large language models, such as attention mechanisms,
feed-forward networks, and embedding substructures. It builds a more perceptive privacy control path from
a structural perspective. Compared with traditional uniform perturbation strategies, MPI allocates
perturbations differently based on each module's structural characteristics and semantic sensitivity. This
enhances privacy protection while preserving the stability and interpretability of internal representations. A
modulation factor is used to dynamically adjust the perturbation intensity for each submodule, aligning the
perturbation behavior with the needs of semantic modeling and avoiding excessive disruption to critical
information flow. MPI is highly modular and pluggable, allowing flexible deployment across various fine-
tuning paradigms. It complements task-aware mechanisms and forms a coordinated structure. The overall
architecture of the mechanism is illustrated in Figure 3.

Figure 3.MPI Model Architecture

Specifically, consider a modular neural architecture where the submodule output of a layer l is represented
as:
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To achieve module-level perturbation injection, we embed noise into the output of each submodule. The
perturbation form is defined as:
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Where l represents the local privacy strength control parameter corresponding to the module l , which is
dynamically adjusted by the task-related sensitivity. To avoid excessive amplification of perturbations
during forward propagation, MPI introduces a structural weighting mechanism and a structural modulation
factor l for each module, resulting in the modulated expression:
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The structural modulation factor  1,0t is set according to the importance of the module to the target
task. Important modules retain a larger proportion of the original expression, and non-core modules increase
the disturbance injection.

To further constrain the distribution stability of module perturbations in the semantic space, a module
regularization term is introduced:
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Where S is the set of modules that inject disturbances. This regularization term can effectively penalize
perturbations that cause excessive deviations in module expression, ensuring the controllability and
consistency of model expression.

Finally, the objective function of MPI integrates the module injection expression, structural regularization,
and original task loss, and the complete optimization objective is defined as:

MPItaskMPI RLL  

 is a structural regularization factor that balances task performance with module injection stability. This
loss function plays a key structural regulation role in MPI, not only explicitly controlling the perturbation
injection amplitude of each module but also providing guidance for optimizing cross-module expression
coordination. This mechanism synergizes with the aforementioned TDPF: TDPF dynamically adjusts the
privacy budget and perturbation strategy within the global optimization path, while MPI implements fine-
grained differential privacy embedding within the structural dimension, achieving a complete, integrated
privacy control solution from the global path down to the module unit.

4. Experimental Results
4.1 Dataset
This study uses the publicly available WinoBias Coreference Dataset, which can be accessed on the Kaggle
platform. The dataset is specifically designed for coreference resolution tasks and includes a large number of
annotated pairs of gender-neutral pronouns and antecedents. It is suitable for evaluating a model's ability to
understand semantic referential relationships. In cross-task fine-tuning or incremental learning scenarios,
WinoBias provides clear binary labels indicating whether a coreference exists. Its well-defined semantic
structure and balanced class distribution make it ideal for observing whether a model can retain robust
recognition of coreference patterns from previous tasks when new tasks are introduced. Each sample



consists of a sentence with an ambiguous pronoun and candidate antecedents, with a label indicating
whether the model should resolve the pronoun correctly.

The WinoBias dataset also emphasizes gender bias in real-world language use. It highlights how models
may exhibit bias when processing socially grounded semantic expressions. Since fine-tuning may cause
improper generalization of style, register, or gender preference, this dataset helps examine whether the
model maintains its ability to recognize pronoun resolution patterns from earlier semantic structures after
being trained on new tasks. The dataset includes diverse examples, covering various sentence types,
pronoun forms, and referential ambiguities. These complex contexts effectively support the evaluation of
task-aware mechanisms such as TDPF, particularly in adjusting sensitivity to semantically important
samples. This allows validation of task-specific scoring and perturbation strategies.

In addition, WinoBias includes hierarchical and subset partition structures, such as groupings based on
occupation categories or semantic templates. This structure is naturally compatible with staged training and
evaluation in task-incremental learning. The proposed Modular Privacy-aware Injection (MPI) can leverage
these subsets to perform differential privacy noise injection and modulation control within different
submodules. This ensures that handling a specific semantic subtask does not degrade the model's ability to
process others. By using phased training and localized injection, the model achieves privacy protection for
new tasks while preserving performance on existing coreference patterns.

4.2 Experimental setup
All experiments in this study were conducted in a standardized deep learning environment. The setup was
based on Ubuntu and ran on a server equipped with two NVIDIA A100 40GB GPUs, 1TB of memory, and
an Intel Xeon Gold 6348 CPU. To ensure training stability and reproducibility, all experiments were
implemented using the PyTorch framework. CUDA and cuDNN versions were kept compatible. Mixed
precision training (AMP) was used to improve resource efficiency. Multi-GPU distributed synchronization
was enabled to accelerate fine-tuning convergence.

For the base model, this study adopts the open-source ChatGLM2-6B, which has strong capabilities in
Chinese understanding and generation. It supports reasoning, instruction following, and context modeling.
The model is compatible with various parameter-efficient fine-tuning methods. INT4 quantization was used
to reduce memory usage during model loading. Full parameter fine-tuning was applied to preserve model
expressiveness and integrate with the task-aware privacy mechanism. All tokenizer settings and model
initialization parameters remained consistent to avoid preprocessing bias.

During training, the initial learning rate was set to 2e-5. The AdamW optimizer was used with a linear
learning rate decay schedule. The gradient clipping threshold was 1.0. The batch size was set to 16, with a
maximum of 10 epochs. After each epoch, validation was performed, and the best model state was saved for
final inference. Noise scale parameters for the privacy mechanism were selected from {0.5, 1.0, 1.5} and
consistently applied to both task-aware gradient paths and modular injection structures. All random seeds
were fixed at 42 to ensure reproducibility.

4.3 Experimental Results
1) Comparative experimental results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.



Table 1: Comparative experimental results

Method PBE↑ RA↑ (%) TIR↓ (%) SPS↑ FLOPs↓

TDPF + MPI (Ours) 0.92 85.3 3.40 0.81 68.2

DP-Finetune [25] 0.77 79.8 6.70 0.68 84.5

LoRA [26] 0.54 83.1 9.10 0.63 45.3

FedNLP [27] 0.69 76.4 5.50 0.71 93.8

D3PM[28] 0.74 81.7 4.90 0.72 76.0

As shown in Table 1, overall, the proposed TDPF + MPI method demonstrates clear advantages across all
key evaluation metrics, reflecting its effectiveness in balancing privacy protection and structural stability. In
terms of Privacy Budget Efficiency (PBE), the method achieves a score of 0.92, significantly higher than all
baseline methods. This indicates that the task-aware mechanism can accurately control the location and
intensity of perturbations while efficiently utilizing the privacy budget. The high efficiency of privacy
scheduling also offers broader flexibility for modular injection strategies. These results confirm the feasibility
of our proposed two-level mechanism in layered semantic protection.
For the Retained Accuracy (RA) metric, TDPF + MPI maintains a performance level of 85.3 percent,
outperforming LoRA and D3PM. This suggests that the coupling design between differential perturbation and
semantic modeling enhances task adaptability. In contrast, traditional methods such as DP-Finetune apply
static noise and often impair semantic representation. Our method leverages gradient alignment and
sensitivity-based weighting to target high-risk areas only, preserving representational integrity along core
semantic paths and maintaining generalization performance across tasks.
In terms of Task Interference Rate (TIR) and Structural Perturbation Stability (SPS), our method achieves 3.4
percent and 0.81, respectively, outperforming competing approaches. These results show that the modular
injection mechanism plays a key role in limiting the spread of perturbation and preserving semantic
consistency within substructures. Compared with methods like FedNLP and LoRA, which lack structural
alignment in local parameter updates, our MPI module modulates channel activations and perturbation
directions to prevent semantic drift and structural degradation. This ensures the stable coexistence of tasks in
continual learning settings.

Regarding computational cost, our method controls FLOPs at 68.2 × 10 ⁹ while maintaining strong
performance. This is lower than many privacy-enhanced approaches, such as DP-Finetune and D3PM. The
result is attributed to the suppression of redundant gradient perturbations by the task-aware strategy and the
improved sparsity from the modular design. This demonstrates a more efficient use of structure in large-scale
fine-tuning. Overall, the proposed approach achieves a balanced optimization across privacy protection,
structural control, and computational overhead, providing strong technical support for controllable fine-
tuning of large language models in privacy-sensitive environments.
2) Ablation Experiment Results
To evaluate the actual contribution of each module to overall performance, ablation studies are widely used to
assess the impact of different design components. By incrementally adding or removing specific modules, the
role of each mechanism in model performance, stability, and resource consumption can be identified. This
process helps reveal the effectiveness and necessity of key structural elements. Table 2 presents the
experimental results under different module combinations. The first row shows the baseline model, followed
by the sequential introduction of the two core modules, and finally the complete method. The changes in each
metric demonstrate the synergistic effects and performance gains of the proposed components.



Table 2: Ablation Experiment Results

Method PBE↑ RA↑ (%) TIR↓ (%) SPS↑ FLOPs↓

Baseline 0.41 81.2 11.4 0.59 72.5

+ TDPF 0.78 84.6 6.10 0.71 69.0

+ MPI 0.65 82.8 7.40 0.76 67.3

+All (TDPF+MPI) 0.92 85.3 3.40 0.81 68.2

The overall comparison shows that introducing the Task-aware Differentially Private Fine-tuning (TDPF)
mechanism effectively reduces task interference without significantly compromising task accuracy. This
indicates that TDPF enables precise control through sensitivity-guided weighting and dynamic noise injection.
Compared to the original fine-tuning approach, TDPF applies gradient clipping and perturbation coordination
to structurally protect key nodes in the semantic representation path. As a result, the model maintains its
ability to represent original knowledge even under new task interference. The notable improvement in the
PBE score further confirms the budget efficiency of this perturbation control strategy, allowing the model to
achieve better learning performance while satisfying differential privacy constraints.
The Modular Privacy-aware Injection (MPI) mechanism introduces localized noise and modulation control
without changing the global optimization process. This design enables differentiated noise levels for specific
submodules, reinforcing structural consistency along semantic pathways. Perturbations are confined to high-
redundancy areas and do not affect the discriminative capacity of critical semantic nodes. The improved SPS
score reflects the advantage of this selective structural injection, showing that MPI provides a more stable and
task-friendly form of interference. Compared to global perturbation-only methods, MPI offers better
structural controllability and smoother representational flow, presenting a new direction for localized
disturbance modeling in large model fine-tuning.
When the two mechanisms work together, they form a privacy protection loop from global optimization to
local injection, building a dynamic feedback pathway between macro-level learning and micro-level structure.
This design enhances the overall structural robustness of the model and balances perturbation control with
semantic retention during training. The final results show that the combination of TDPF and MPI is not a
simple additive effect. Instead, they interact with differential constraints, noise distribution, and submodule
alignment. This synergy enables effective integration of privacy protection, performance retention, and
structural stability, supporting both theoretical soundness and practical value in complex real-world tasks.
3) The Impact of Privacy Budget Allocation Strategies on Multi-Task Performance Trade-offs
This paper also analyzes the impact of privacy budget allocation strategy on multi-task performance trade-
offs. The experimental results are shown in Figure 4.
In terms of the Privacy-aware Behavioral Effectiveness (PBE) metric, the proposed method shows a steady
upward trend as  increases, with the most significant improvements observed in the medium to high
budget range. This benefit arises from the task-aware attention mechanism, which effectively preserves key
behavioral semantics under noise control and enhances the adaptability of representations to downstream
tasks. When  is limited, overall representational capacity is constrained. However, the gradient sensitivity
scoring module ensures that critical task objectives are not overly disrupted, maintaining stable performance
output.
The Representation Alignment (RA) metric also increases with higher  , indicating enhanced alignment
ability of the model's representations. Combined with the modular injection strategy, the method establishes a
regularization flow path across multiple privacy-sensitive modules. This allows the model to jointly capture



structural similarities and differences among tasks during training. The mechanism promotes unified
semantic representation under high privacy budgets while avoiding structural drift caused by privacy noise,
thereby improving overall semantic consistency.

Figure 4. The Impact of Privacy Budget Allocation Strategies on Multi-Task Performance Trade-offs
The Task Interference Rate (TIR), a key metric for measuring task conflict, clearly decreases as  increases,
particularly showing convergence after  = 0.8. This suggests that the gradient perturbation control
mechanism introduced in this study significantly reduces task interference. The mechanism integrates
sensitivity-guided perturbation from the first innovation and local regularization from the second. It
adaptively balances noise intensity in multi-task settings, effectively improving task independence and
mitigating negative transfer.
The Structure Preservation Score (SPS) and FLOPs metrics together reflect the dual advantage of structural
stability and computational efficiency. In the experiments, SPS shows a positive correlation with  ,
indicating that the method preserves the stability of semantic topology. FLOPs remain within a controlled
range as  increases, showing that the method does not introduce significant computational overhead while
improving performance. This is achieved through lightweight injection paths and regularization modules in
the design, maintaining a balance between efficiency and effectiveness under privacy budget constraints.
Regarding FLOPs specifically, the method demonstrates strong control of computational resources across
different privacy budgets. As  increases, the model processes more unperturbed features, leading to a
slight increase in computation. However, due to the lightweight design of the modular injection mechanism,
the total computation does not expand exponentially. The mechanism allows flexible injection across
submodules and precisely constrains redundant computation paths through local regularization. This prevents
unnecessary overhead during privacy enhancement. Compared with traditional differential privacy strategies
that apply uniform processing to global parameters, the proposed method achieves collaborative optimization
of task-awareness and structural control, preserving semantic integrity while maintaining efficiency in both
training and inference phases.
4) The Impact of Differential Privacy Injection Frequency on Fine-Tuning Convergence Efficiency
This paper also gives the impact of differential privacy injection frequency on fine-tuning convergence
efficiency. The experimental results are shown in Figure 5.
As shown in Figure 5, in this experiment, we investigate how the frequency of differential privacy injection
affects model structure and convergence efficiency during fine-tuning. For the PBE (Privacy-preserving
Behavior Encoding) metric, a high injection frequency, such as injecting at every step, improves
representation consistency under privacy constraints. Frequent perturbations enhance structural generalization
during training. In contrast, low injection frequency leads to insufficient intervention in long-sequence



training. This increases the model's reliance on individual samples and reduces its robustness in privacy-
preserving expression, as reflected by a clear decline in PBE scores.

Figure 5. The Impact of Differential Privacy Injection Frequency on Fine-Tuning Convergence Efficiency
For the RA (Representation Alignment) metric, results show that moderate injection frequency, such as every
five steps, better preserves the consistency and stability of the semantic embedding space. At this frequency,
privacy perturbations avoid excessive disruption while allowing alignment mechanisms across modules to be
fully activated. This alignment is crucial for the coordinated functioning of the modular regularization and
injection paths proposed in this study. It directly impacts the transmission efficiency of task-relevant
information across components.
Regarding the TIR (Task-specific Information Retention) metric, results exhibit a clear U-shaped trend.
Extremely high or low injection frequencies significantly impair the model's ability to capture task-specific
features. High frequency causes noise accumulation and unstable gradient directions. Low frequency results
in inadequate regularization, leading to task overfitting. A moderate injection frequency maximizes the
model's ability to retain information throughout continual learning. It is a key factor for ensuring task stability.
The SPS (Semantic Perturbation Stability) metric provides further evidence for this pattern. With high-
frequency injection, the model demonstrates strong privacy control but suffers from decreased semantic
stability. As the injection frequency decreases, semantic drift is reduced, reflected in higher SPS scores. This
effect, combined with the regulation from the Local Privacy Control module, confirms that a proper injection
strategy must balance perturbation strength and semantic integrity through a nonlinear trade-off.
In terms of the FLOPs (Floating Point Operations) metric, injection frequency has a measurable impact on
computational cost. High-frequency settings require repeated noise sampling and gradient reconstruction,
increasing computational overhead. Low-frequency injection reduces FLOPs but may compromise
performance and robustness. By adjusting the injection schedule, this study achieves a dynamic balance
between convergence speed and resource control. It offers a practical framework for structured privacy
regulation in multi-task learning environments.
5) Analysis of the Impact of Module Modulation Factor Settings on Semantic Representation Integrity
This paper also gives an analysis of the impact of module modulation factor settings on the completeness of
semantic representation. The experimental results are shown in Figure 6.
As shown in the results of Figure 6, in the experiments evaluating the impact of modulation factor settings on
performance, the PBE metric shows a clear nonlinear improvement trend. When the modulation factor is in
the moderate range (e.g., 0.6 to 0.8), the model's ability to perceive structural semantic boundaries is
enhanced. This leads to more complete local feature representations and improves boundary-level accuracy.



Extremely high or low modulation levels may introduce semantic redundancy or suppress useful signals,
resulting in decreased representation quality.

Figure 6. Analysis of the Impact of Module Modulation Factor Settings on Semantic Representation
Integrity

Changes in the SPS metric further confirm the role of the modulation factor in constructing semantic integrity.
Proper modulation strengthens the model's ability to aggregate shared semantic structures. It enables more
efficient structural representation without relying on explicit label guidance. When the modulation factor is
set to 0.7, the model achieves optimal coordination between submodules, reflecting a balanced state of
semantic consistency and feature complementarity.
The RA and TIR metrics show complementary trends. RA increases with higher modulation factors, while
TIR generally decreases. This suggests that the modulation mechanism enhances task alignment and reduces
interference from irrelevant tasks in the target representation space. When the modulation factor is around
0.75, both metrics reach relatively optimal values. This confirms the synergistic effect between structural
regularization and task-weighted guidance.
For the FLOPs metric, computational cost slightly increases with higher modulation levels. However,
reasonable modulation settings keep the overhead within a controllable range. This indicates that the
proposed module modulation mechanism offers a good balance between efficiency and performance. It is
especially suitable for deploying semantically aware privacy injection strategies in resource-constrained
environments.

5. Conclusion
This study addresses the challenge of secure fine-tuning for large language models in privacy-sensitive
scenarios. It proposes a unified optimization framework that integrates differential privacy protection with
structural injection strategies. The framework consists of a Task-aware Differentially Private Fine-tuning
mechanism (TDPF) and a Modular Privacy-aware Injection structure (MPI). These components operate at the
global gradient optimization level and the local representation space, respectively, to perform perturbation
control and semantic alignment. The framework effectively mitigates the limitations of traditional differential
privacy approaches in balancing model performance, structural stability, and computational efficiency.
Through multidimensional perturbation guidance and regularization design, the proposed method achieves
formal privacy protection while maintaining high adaptability to complex downstream tasks.
Experimental results confirm the effectiveness of the proposed method across multiple aspects, including
multi-task transfer, privacy regulation, and structure preservation. Compared with existing baselines, the dual
mechanism shows a better privacy-performance trade-off. It supports continuous high-precision semantic
learning without requiring large amounts of labeled data or full-parameter tuning. The experiments highlight



the method's capacity to build a dynamic balance between semantic retention and information compression.
This is observed across key dimensions such as privacy budget sensitivity, perturbation frequency, and
modulation factor control. In particular, the modular injection strategy enhances task interference control and
structural stability, offering a more interpretable and controllable fine-tuning pathway for large models.
The proposed approach is not only theoretically innovative but also practically valuable across a range of
real-world applications. In domains such as healthcare, finance, public services, and law, where strong
privacy protection and high language understanding are required, building efficient and trustworthy large
language models remains a critical challenge. This method provides an embedded, modular, and structure-
aware fine-tuning mechanism. It allows large models to adapt to new tasks during deployment and
maintenance without repeated exposure to or overreliance on historical data. The emphasis on directional
perturbation and modular plug-in design also offers useful guidance for future modeling tasks in multimodal,
cross-lingual, and dynamic environments.
Future work may explore more refined perturbation scheduling strategies. Combining them with context-
aware mechanisms from generative pre-trained models could enable better modeling of semantic features and
privacy risks in a context-dependent manner. Extending the proposed structural injection mechanism to
heterogeneous architectures, distributed training, or federated learning frameworks also presents valuable
research and application opportunities. As large language models are increasingly deployed in edge devices,
smart terminals, and industry systems, building secure fine-tuning mechanisms with strong privacy
constraints, low resource costs, and high expressive capacity will become a key direction in the trustworthy
evolution of intelligent models.
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