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Abstract: This paper addresses the modeling challenges in resource usage prediction for microservice
systems. It proposes a collaborative modeling method that combines a dual-branch structure with a
contrastive learning mechanism. The method includes a local branch to model the temporal evolution of
individual services and a global branch to capture collaborative dependencies among multiple services. A
feature fusion module integrates these two types of representations, improving the model's ability to
represent complex service behaviors. To enhance the discriminative power of feature representations, the
model introduces a contrastive loss. This guides the feature encoding process to focus on semantic
consistency and temporal distinctiveness. As a result, the model achieves better performance in
collaborative modeling scenarios. The proposed method is systematically evaluated on a real-world
microservice dataset. It is compared with several representative prediction models from recent years. The
results show clear advantages in regression metrics such as MAE, RMSE, and R². In addition, this paper
conducts ablation studies across several sensitivity dimensions, including hyperparameters, system topology
complexity, data scale, and the proportion of heterogeneous services. These analyses further demonstrate the
model's stability and robustness under various environmental conditions. Experimental results confirm that
the proposed method effectively models both the temporal and collaborative patterns of microservice
resource usage. It is suitable for dynamic resource awareness and management in high-complexity
distributed systems.
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1. Introduction
With the rapid development of cloud-native architecture, microservices have gradually replaced traditional
monolithic systems and become the mainstream approach for building large-scale online services. In
microservice architecture, system functions are decomposed into multiple autonomous modules. These
services work together through lightweight protocols, enabling high availability, scalability, and flexible
deployment[1]. However, the strong interdependencies and dynamic invocation chains between services also
increase system complexity. This brings new challenges to performance tuning, resource management, and
forecasting. Especially in multi-tenant and high-concurrency environments, resource usage fluctuates
significantly. Traditional static resource allocation methods can no longer meet the dynamic needs of real-
world applications[2].
Resource prediction in microservice systems is a core technology for achieving elastic scaling and
performance assurance. Its accuracy directly affects service stability and resource efficiency. Unlike
monolithic services, resource usage in microservices often exhibits "collaborative behavior," where the load
of one service is influenced not only by its traffic but also by the states of upstream and downstream services.



Therefore, it is crucial to model the collaborative patterns among services and uncover their potential
interdependencies. Traditional prediction methods based on single-point time series often ignore such
collaboration. They fail to capture temporal collaborative behavior across service clusters, resulting in
unstable performance and significant prediction errors in real systems[3].
Moreover, modern microservice systems generate high-dimensional, multi-source, and unstructured data.
Simply stacking multi-dimensional inputs does not necessarily enhance the quality of representation. It may
even introduce redundancy and noise. To achieve effective resource prediction, a representation mechanism
capable of distinguishing between informative and non-informative features is needed. It must also support
discriminative learning. In this context, contrastive learning has emerged as a promising approach to improve
representation quality and generalization. By constructing positive and negative pairs, contrastive learning
enables the model to learn a stable and discriminative representation space during training. This enhances the
model's expressive power and robustness in resource prediction tasks.
Due to the heterogeneity among services in terms of resource usage patterns, traffic forms, and deployment
strategies, a single-branch encoder architecture struggles to address both local feature extraction and global
collaborative modeling. Therefore, designing a dual-branch architecture becomes essential. One branch
focuses on modeling the historical resource usage of individual services. The other emphasizes extracting
collaborative behavior across services. This design helps resolve the conflict between modeling granularity
and collaborative understanding. By integrating contrastive learning into the training process, the model can
simultaneously capture service-level evolution and system-level collaborative features more accurately[4].
In summary, resource prediction in microservice systems is not only a technical challenge but also a
foundational task for intelligent scheduling and automated operations. Introducing contrastive learning and
dual-branch architecture can significantly improve the discriminative power of feature representations. It also
supports the development of high-performance prediction models tailored for complex microservice
environments. Such work is essential for enhancing the intelligence of resource management and provides
key support for building stable, efficient, and adaptive cloud-native infrastructures.

2. Related work
With the widespread adoption of microservice architecture in cloud computing environments, the increasing
granularity of services has made dynamic resource management more complex[5]. To address this challenge,
extensive research has focused on resource utilization prediction, especially in scenarios such as container
orchestration, elastic scaling, and service quality assurance. Prediction models have been widely used to
support decision-making in these contexts. Early approaches often relied on statistical methods based on
historical time series, such as ARIMA or moving average techniques. Although these methods can capture
certain trends, they often suffer from delayed response and high prediction error when dealing with the
frequent fluctuations and high-dimensional, heterogeneous patterns of resource usage in microservice
systems. As a result, they fall short in handling complex prediction tasks[6].
To further improve model performance, deep learning models have been increasingly introduced into
resource prediction tasks. Representative architectures include convolutional neural networks for short-term
pattern extraction, recurrent neural networks for time series modeling, and Transformer-based models for
long-range dependency learning. These methods have improved prediction accuracy and generalization to
some extent. However, most of them still treat microservices as independent units, ignoring the complex
interactions and co-evolution among services. In reality, strong upstream and downstream dependencies often
exist between services. Modeling a single service in isolation cannot fully capture its contextual role in the
system, which negatively affects prediction accuracy[7].
In recent years, some studies have begun to consider the system-level perspective by incorporating
collaborative behaviors among services. Graph neural networks and attention mechanisms have been used to
model service topology and contextual influence. These methods focus on embedding collaborative



information during the feature learning stage. This helps alleviate the information loss caused by independent
service modeling. However, two core challenges remain unresolved in collaborative modeling. First, inter-
service collaboration is highly dynamic and diverse, making it difficult to capture through fixed structures.
Second, in highly heterogeneous systems, distinguishing between informative collaborative features and
redundant ones is still a key bottleneck for improving model performance.
At the same time, contrastive learning has emerged as a powerful unsupervised representation learning
technique, showing strong discriminative ability in time series forecasting and system modeling. Its core idea
is to construct positive and negative sample pairs to guide the model in learning a robust and semantically
consistent representation space. However, existing contrastive learning approaches are mostly applied to
image data or unimodal time series. They lack systematic design when applied to microservice systems,
which are characterized by high-dimensional heterogeneity and multi-level interactions. Therefore,
introducing contrastive learning into microservice resource prediction, and designing a dual-branch structure
to decouple "individual service features" from "collaborative contextual features," is a promising direction for
improving model accuracy and generalization.

3. Method
This study proposes a microservice collaborative resource prediction model that introduces a dual-branch
contrastive learning mechanism, aiming to simultaneously capture the temporal evolution characteristics of
the service itself and its collaborative behavior with other services in the system. The overall architecture
consists of two main feature encoding branches, which process local single-service information and global
multi-service context respectively. The detailed structure of the proposed model is illustrated in Figure 1.

Figure 1. Overall model architecture diagram

The model input is a tensor containing historical resource usage information, set as DTNRX  , where N
represents the number of services, T represents the time step length, and D represents the feature dimension
of each time point (such as CPU, memory, etc.). The local branch extracts the short-term resource evolution
characteristics of each service through a temporal convolution module, and the output is represented as

dTN
local RH  ' , while the collaborative branch uses a graph attention network or a structured modeling



method based on the service dependency matrix to output the collaborative context representation
dTN

global RH  ' .

In the feature integration stage, we use a cross-branch attention mechanism for fusion, so that the model can
automatically learn the importance of local and global features. The integrated representation can be written
as:

globallocalfused HHH  )1( 

Where ]1,0[ is a learnable gating coefficient that represents the weighted degree of local and
collaborative information. Subsequently, the fused features are passed through a feedforward prediction
network to output the resource usage prediction value futureTNRY ' for the future time step, which is defined
as follows:
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Where ji zz , represents the embedding vector of the positive sample pair,  is the temperature coefficient,
K is the number of negative samples, and ),( sim represents the cosine similarity function.

The final training goal is to minimize the weighted combination of prediction error and contrast loss. The
overall loss function is defined as follows:

contrastregtotal LLL  

Where 2
2||'|| YYLreg  represents the mean square error between the predicted target and the actual resource

usage value, and B is the contrast loss weight, which is used to regulate the balance between representation
learning and prediction accuracy.

The original intention of designing this model architecture is to separate and model the local behavior and
global coordination information of microservices in a structured way, using a dual-branch design to improve
representation capabilities, while introducing contrastive learning to enhance the distinguishability between
features. Through an end-to-end training process, the model can learn the highly coupled and time-varying
resource usage rules within the microservice system, providing stable prediction support for subsequent
resource scheduling and service governance.

4. Experimental Results
4.1 Dataset
The experimental dataset used in this study is the Alibaba Cluster Trace 2018. This dataset is collected from
a real large-scale production environment and records the resource scheduling and runtime status of
Alibaba's online services on a cloud platform. It covers multiple typical microservice tasks and includes
multi-dimensional resource metrics such as CPU usage, memory consumption, and request rate. The dataset
is representative and complex, reflecting the dynamic nature of resource usage under microservice
architecture.

The dataset contains runtime traces of more than 4,000 physical machines and hundreds of thousands of
container tasks. It provides information on resource requests, actual usage, and system allocation records
across different periods. The data is recorded in time series format with intervals ranging from 5 seconds to
1 minute. It is well-suited for tasks such as resource prediction, load modeling, and service management.



The dataset spans a long period and includes diverse load types, covering typical usage patterns under multi-
tenant and multi-service scenarios.

In this study, we use container-level resource usage data to construct service-level collaborative
representation sequences. We perform regression modeling on the resource trends of each service within
each time window. By leveraging this real-world large-scale microservice dataset, we can effectively
validate the predictive performance and stability of the proposed model under high-dimensional and
heterogeneous environments. This also enhances the practical relevance and applicability of the research
findings in industrial settings.

4.2 Experimental setup
All experiments in this study were conducted on a high-performance computing server. The hardware
configuration includes two NVIDIA A100 GPUs with 40GB memory each, dual Intel Xeon Gold 6338
CPUs with a total of 64 cores, 512GB DDR4 memory, and a 2TB NVMe SSD. The operating system is
Ubuntu 22.04 LTS. The deep learning framework used is PyTorch 2.1, with Python version 3.10. Additional
dependencies include DGL 1.1, NumPy, Pandas, and Matplotlib. This setup ensures high computational
efficiency and stability for large-scale graph neural networks and contrastive learning tasks.

During the training phase, all models were evaluated under the same data-splitting strategy. The input time
window was set to 60 steps, and the prediction horizon was set to 10 steps. The batch size was fixed at 128.
The optimizer used was Adam, and the initial learning rate was set to 0.001 for all models. Early stopping
was applied to prevent overfitting, and performance metrics on the validation set were recorded at each
epoch. All experiments were executed in single-task processes to avoid resource contention. This ensures
fair comparisons across models and guarantees reproducibility.

4.3 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method MAE RMSE R2

Ours 0.038 0.071 0.926

Autoformer[8] 0.051 0.093 0.881

Informer[9] 0.057 0.101 0.867

GTS[10] 0.049 0.088 0.892

TimesNet[11] 0.043 0.079 0.911

The comparison results in the table show that the proposed model demonstrates significant advantages in
microservice resource prediction tasks. It outperforms existing mainstream methods across all three major
evaluation metrics: MAE, RMSE, and R ² . The MAE and RMSE values are 0.038 and 0.071, respectively,
which are substantially lower than those of the baseline models. This indicates that the model performs better
in controlling prediction errors and fitting overall trends. It captures the temporal dynamics of service
resource usage more accurately and enhances the ability to perceive behavioral patterns in complex
microservice systems.
Compared with models such as Informer and Autoformer, which have relatively simple structures, the
proposed model shows a significant improvement in the R² metric, reaching 0.926. This suggests a stronger
capacity to explain the variance in resource changes. The improvement is mainly attributed to the model's



architectural design for capturing collaborative behavior among microservices. By employing a dual-branch
mechanism to separately process local temporal features and global dependencies, the model addresses the
limitations of traditional methods that treat services in isolation and lack contextual understanding.
In addition, when compared with recently proposed structure-enhanced models such as GTS and TimesNet,
the proposed method still leads in all evaluation metrics, reflecting strong generalization ability. This
demonstrates the critical role of the contrastive learning mechanism in the feature encoding stage. By
constructing positive and negative sample pairs, the model learns a discriminative and temporally consistent
representation space. This improves its ability to fit dynamic resource patterns and enhances robustness.
Overall, the proposed model achieves a strong balance between accuracy and stability. It is particularly
suitable for microservice systems with complex resource usage patterns and tight inter-service dependencies.
Through joint optimization of architectural design and training strategy, the model not only improves
predictive performance but also exhibits greater adaptability to system variations. This provides a solid data-
driven foundation for subsequent resource scheduling and service management.
This paper also gives the impact of different contrast loss weights on model performance, and the
experimental results are shown in Figure 2.

Figure 2. The impact of different contrast loss weights on model performance
The results in the figure show that the weight of the contrastive loss has a significant impact on model
performance. When the contrastive loss is not introduced (λ = 0.0), the model reaches the highest MAE. This
indicates that relying only on traditional supervised signals fails to constrain the structure of the
representation space. The model struggles to learn discriminative feature representations, which negatively
affects the accuracy of resource prediction.
As the contrastive loss weight increases to λ = 0.5, the model performance improves continuously. The MAE
reaches its lowest value. This suggests that a moderate contrastive learning signal can effectively guide the
model to distinguish fine-grained features between services during representation learning. It helps the model
capture the collaboration between local and global information. This confirms the effectiveness of
introducing semantic discrimination mechanisms in microservice scenarios, especially when service
dependencies are complex and temporal patterns vary frequently.
However, when the weight increases further to λ = 0.7 and λ = 1.0, the MAE slightly increases. This indicates
that an overly strong contrastive signal may overshadow the main regression objective. The feature encoding
process may shift away from the prediction task. The model becomes more focused on the distance structure
of representations instead of the target variable itself, leading to increased prediction error. This shows that
the balance between contrastive loss and task loss is a key factor in model performance.



Overall, the experiment confirms the sensitivity of model performance to the contrastive loss weight. It shows
that introducing a discriminative learning mechanism can enhance model performance in microservice
resource prediction. Properly tuning the hyperparameter λ helps achieve a balance between representation
learning and the prediction task. This improves generalization and stability, providing more reliable decision
support for resource management in complex service environments.
This paper also gives an analysis of the performance changes of the model under the change of microservice
topology complexity, and the experimental results are shown in Figure 3.

Figure 3. Analysis of model performance changes under changes in microservice topology complexity
The figure shows that the complexity of the microservice topology has a clear impact on model performance.
As the number of services increases, the overall service dependencies in the system become more dense. This
adds a modeling burden when capturing collaborative features between services, causing the prediction error
(MAE) to rise gradually. This result indicates that as the system topology scales up, the model faces greater
challenges in representing dynamic interactions and information transmission paths among services.
When the number of service nodes is small, the model can effectively extract temporal features of individual
services and simple collaboration patterns. In this case, the MAE remains at a low level. This suggests that
the dual-branch structure has a strong feature adaptation ability for small-scale topologies. However, as the
number of services increases, the possible interaction paths grow rapidly. This expands the collaborative
representation space and increases the model's sensitivity to irrelevant features, which in turn affects the
overall regression accuracy.
By comparing trends across different topology scales, it can be observed that although the model uses a graph
attention mechanism to capture global context, there is still a representation bottleneck in high-complexity
scenarios. In particular, when the number of services exceeds 90, the prediction error rises sharply. This
suggests that collaborative modeling capacity is limited by information overload or feature interference. It
reflects the need for stronger structure-aware mechanisms or feature selection strategies to enhance model
robustness in dense microservice environments.
Overall, this experiment confirms the model's sensitivity to topological complexity and reveals the
performance boundary of collaborative modeling as scale increases. The results suggest that for large-scale
microservice systems, future work could consider hierarchical modeling, modular design, or sparse graph
optimization to further improve the model's adaptability to complex topologies.
This paper also presents a study on the impact of changes in the amount of training data on model
performance, and the experimental results are shown in Figure 4.



Figure 4. Study on the impact of changes in training data volume on model performance
The figure shows that the amount of training data has a clear impact on model performance. As the
proportion of training samples increases, the prediction error (MAE) in the resource forecasting task
consistently decreases. This result indicates that the proposed dual-branch contrastive learning structure
performs better when sufficient data is available. It effectively captures both the temporal evolution patterns
of services and their collaborative structural information, thereby improving overall prediction accuracy.
When only 10% of the total data is used for training, the prediction error remains relatively high. This
suggests that a small dataset is insufficient to support comprehensive learning of complex microservice
collaboration patterns. The resulting feature representations are limited, which reduces the model's regression
capacity. However, as the training data size increases, the model gradually builds stable representations of
service dependencies. When the training data exceeds 70%, performance improvements begin to plateau,
reflecting the saturation of the model's learning capacity.
This experiment also reveals the sensitivity of contrastive learning to data volume. With limited training data,
the space for constructing effective positive and negative pairs is small. This weakens the representational
power of the contrastive loss and limits the model's ability to learn a highly discriminative embedding space.
In contrast, with sufficient data, the model can optimize both the main regression objective and the
contrastive objective. It can extract meaningful contextual differences from diverse samples, enhancing
feature robustness and generalization.
In summary, the proposed model shows stronger performance and training stability when applied to medium
or large-scale datasets. This suggests that the model design is well suited for real-world microservice
environments with large volumes of heterogeneous logs and monitoring data. For deployment scenarios with
limited data, pretraining or transfer learning strategies may be considered to compensate for the limitations of
small-sample learning.
This paper also gives the impact of the proportion of heterogeneous services on the collaborative modeling
effect, and the experimental results are shown in Figure 5.



Figure 5. The impact of heterogeneous service ratio on collaborative modeling effectiveness
The figure shows that the proportion of heterogeneous services has a significant impact on the effectiveness
of collaborative modeling. As the percentage of heterogeneous services in the system increases, the MAE in
the prediction task also shows an overall rising trend. This indicates that greater service diversity disrupts the
model's ability to stably learn collaborative features. When the proportion exceeds 70%, the error increases
rapidly. This suggests that in scenarios with large differences in service functions, call paths, and load
patterns, the robustness of the model's global representation becomes challenged.
When the heterogeneity ratio is low, such as between 10% and 30%, the service cluster is relatively
homogeneous. The collaborative modeling mechanism can extract stable contextual representations based on
structural commonalities among services. As a result, the MAE remains low. This structural consistency
enhances alignment during the dual-branch fusion stage. The coordination between local and global features
becomes tighter, which leads to more accurate prediction outputs.
As heterogeneity increases to 50%–70%, the model begins to face difficulties caused by feature distribution
differences. In this stage, service behavior becomes more diverse. Some services may introduce non-standard
dependency paths or abnormal load patterns. This adds noise to the collaborative modeling module during
feature aggregation. The ability to understand upstream and downstream relationships is affected.
Overall, the experimental results reveal the performance boundaries of collaborative modeling in
heterogeneous environments. They also highlight the importance of structure-aware mechanisms and feature
selection strategies. In highly heterogeneous scenarios, relying solely on a unified modeling path may lead to
information conflicts. Future work may explore strategies such as cluster-based modeling or adaptive feature
gating to improve the model's adaptability to diverse microservice systems.

5. Conclusion
This paper presents a collaborative modeling framework for resource prediction in microservice systems. The
proposed model integrates a dual-branch structure with a contrastive learning mechanism. The local branch
captures the temporal evolution of individual services, while the global branch models dependencies between
services. In the fusion stage, contrastive learning is introduced to enhance feature discriminability. This
design addresses limitations in traditional methods, such as insufficient collaborative modeling and weak
contextual awareness. Extensive experimental results show that the method achieves strong robustness and



high prediction accuracy under various sensitivity conditions. It demonstrates good adaptability in
heterogeneous and high-complexity microservice scenarios.
In key applications such as microservice resource scheduling, elastic scaling, and service management,
accurate resource prediction models can significantly improve resource utilization. They also reduce service
latency and system energy consumption. The proposed method features strong structural scalability and high
training stability. It can serve as a foundational modeling component in large-scale service systems and
provide solid support for automated operation strategies. In addition, the model's structural design offers new
insights for tasks involving multi-source feature fusion and context-aware prediction. It has strong potential
for transfer and practical deployment.
This work also includes a systematic performance analysis across multiple dimensions, including
hyperparameters, system topology, data scale, and service heterogeneity. These experiments further validate
the model's ability to operate in complex environments. The results support the rationality of the model
design and offer a reference framework for future studies. In particular, in cloud-native environments with
frequent resource fluctuations and high concurrency, the model provides a methodological foundation for
intelligent scheduling and adaptive resource allocation.
Future research may explore two main directions. One is to further enhance the model architecture by
incorporating structure-aware modules, such as hierarchical attention mechanisms or dynamic graph
representations, to address the challenges of highly dynamic service topologies. The other is to investigate
unsupervised pretraining and transfer learning strategies to improve performance in low-data or cold-start
scenarios. Integrating the proposed method into real-world cloud scheduling systems and aligning it with
policy-level optimization will also be an important step toward practical application.
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