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Abstract: This paper addresses the problem of backend scheduling delay prediction and proposes a
modeling method based on hierarchical attention to overcome the limitations of traditional approaches under
high-dimensional features, complex dependencies, and dynamic environments. The study begins with
multidimensional features such as task load, resource usage, and component invocation relationships, and
generates low-level representations through linear embedding and nonlinear mapping. Local attention is
then introduced to model short-term dependencies and local features, while global attention and hierarchical
aggregation structures capture cross-component and cross-temporal dependencies, achieving a balance
between fine-grained local modeling and overall dependency modeling. A prediction layer is further
constructed, where local and global representations are fused to generate delay predictions. To verify the
effectiveness of the method, experiments were conducted on a public dataset with Transformer, FedFormer,
iTransformer, and TimeMixer as baselines. Results show that the proposed method outperforms these
models in key metrics, including MSE, MAE, RMSE, and MAPE. In addition, extensive sensitivity analyses
were carried out, covering parameters and environmental factors such as learning rate, weight decay, hidden
dimension size, node scale, and missing rate. The results demonstrate that the proposed method exhibits
strong robustness and stability under diverse conditions. Overall, this study improves both prediction
accuracy and generalization performance in backend scheduling delay prediction and provides strong
support for efficient scheduling in complex systems.
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1. Introduction
In the context of rapid advances in modern cloud computing and distributed systems, the issues of backend
service scheduling and resource allocation have become increasingly prominent. With the continuous
expansion of business scale and the rapid growth of user demand, backend components are required to handle
complex and dynamic task flows under large-scale concurrency. Scheduling delay, as a key metric of system
performance and user experience, directly determines service response speed and overall system stability.
However, traditional scheduling optimization methods often rely on fixed rules or static priority mechanisms,
which struggle to cope with dynamic workloads and multidimensional resource constraints[1]. Therefore,
how to effectively predict scheduling delay under multi-source requests and limited resources has become an
important topic for improving system efficiency and user satisfaction.
In this context, the accuracy of delay prediction not only affects resource utilization but also determines the
effectiveness of service elasticity and fault-handling mechanisms. Traditional prediction approaches often



rely on shallow features or statistical patterns. Yet, when facing complex task dependencies and multi-level
resource competition, they easily overlook interactions and dynamic evolutions across different levels of
features. In microservice architectures, the call chains among components are highly complex. Delays are
rarely caused by a single node, but by multi-level dependencies and concurrent conflicts. This hierarchical
association means single-level modeling cannot capture the global dynamics, leading to degraded prediction
performance. Thus, it is urgent to adopt mechanisms that can model hierarchical relationships and
multidimensional dependencies to better describe the dynamic characteristics of scheduling delay[2].
In recent years, advances in deep learning and attention mechanisms have provided new possibilities for
modeling complex patterns. Attention mechanisms can highlight key information and suppress redundant
features, giving models stronger feature selection and representation ability when handling high-dimensional
data[3]. However, single-level attention is still insufficient in scheduling scenarios. Scheduling delay is
influenced not only by single-dimension features but also by multi-level interactions across tasks,
components, and resources. Introducing hierarchical attention mechanisms allows the system to simulate both
bottom-up and top-down information flows. This design captures local details while preserving global
dependencies. Such mechanisms can help overcome the limitations of traditional methods in prediction
accuracy and robustness[4].
From an application perspective, accurate scheduling delay prediction is of great significance for cloud
platforms and backend systems. First, it enables systems to estimate potential delays before scheduling tasks,
allowing proactive load balancing and optimized resource allocation, thereby reducing performance
degradation caused by local congestion. Second, in terms of service quality, delay prediction provides the
basis for elastic scaling and fault recovery, helping systems take preventive measures before anomalies occur.
Third, in cost control, effective prediction improves resource utilization and avoids waste from over-
provisioning. These benefits go beyond technical performance improvements and extend to better user
experience and stronger competitiveness for service providers.
In summary, applying hierarchical attention mechanisms to scheduling delay prediction in backend
components is both a natural trend in technology development and a practical need under complex workloads.
By jointly modeling multi-level features, it becomes possible to reveal the intrinsic mechanisms behind
delays more comprehensively[5]. This supports intelligent scheduling and dynamic optimization in backend
systems. The research in this direction has both strong academic value and broad practical potential, laying
the foundation for more efficient and reliable distributed system operations in the future.

2. Related work
In existing research, backend component scheduling and delay prediction have always been important
directions for system performance optimization. Early work mainly focused on rule-based scheduling
strategies and statistical modeling methods. These approaches usually relied on fixed priorities, queue lengths,
and average load levels for scheduling decisions. Delay estimation was often carried out through traditional
time series models or queuing theory[6,7]. Such methods were effective in small-scale systems or low-
complexity environments. However, they often failed to capture complex nonlinear relationships under
highly dynamic workloads and multidimensional resource competition. This led to limited prediction
accuracy and adaptability. With the expansion of cloud platforms and the diversification of business demands,
methods based solely on static rules or simple statistical patterns have shown clear limitations.
With the development of machine learning, researchers began to explore more advanced modeling methods
to improve prediction accuracy. Traditional multilayer perceptrons and convolutional neural networks were
introduced into scheduling scenarios to capture the mapping between task features, resource indicators, and
delay[8]. These models broke through the constraints of linear assumptions and provided more flexible fitting
ability with high-dimensional inputs. However, they were less effective in handling strong sequential and
dependency patterns. Scheduling delay is often influenced by task dependencies, component invocation paths,
and resource competition dynamics. Static feature learning alone cannot fully capture this complexity. To



address this, some studies attempted to use recurrent neural networks and deep time series models to
represent system state evolution over time. Yet, challenges remain in modeling long sequences and multi-
level feature interactions[9,10].
In recent years, the introduction of attention mechanisms has created new opportunities for delay prediction.
Attention-based models can highlight key factors across both feature and temporal dimensions. This allows
them to enhance feature selection in high-dimensional and complex environments. In backend scheduling
scenarios, such methods capture non-uniform dependencies between tasks and resources, enabling models to
adjust their focus dynamically. Compared with fixed windows or uniform weighting, attention mechanisms
show greater flexibility and expressiveness[11]. However, most current work still emphasizes single-level
feature modeling. This makes it difficult to balance local details and global dependencies. As a result, models
may still face prediction bias and limited generalization in complex microservice architectures and multi-
component interactions.
To further enhance prediction, research has turned to hierarchical modeling. Hierarchical attention
mechanisms can emphasize critical features at the local level while integrating cross-component and cross-
task dependencies at higher levels. Through multi-level structures, they progressively extract and fuse
features across different scales. This enables models to capture local delay fluctuations while understanding
global system dynamics. Current studies in this direction show promising potential for delivering fine-grained
delay prediction in complex backend environments[12]. However, how to balance prediction accuracy with
computational efficiency and scalability remains an important open problem that requires deeper
investigation.

3. Proposed Approach
In this study, the core of the model design is to model the scheduling delay of backend components through a
hierarchical attention mechanism. The model architecture is shown in Figure 1.

Figure 1. Overall model architecture



First, the input features are composed of multi-dimensional system indicators, including task load, resource
usage, and component call dependencies. Let the input sequence be a vector set:
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Where T represents the number of time steps and d represents the feature dimension of a single moment. To
extract the underlying features, the input is first represented by a linear transformation and a nonlinear
activation function:
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Where )( represent activation functions, and td is the hidden layer dimension.

At the local level, the self-attention mechanism is used to model the dependencies within the sequence. For
each layer of features, a query, key, and value matrix is constructed:
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The final local representation is:
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This process can highlight key dependencies in time series data and capture short-term delay factors.

At the global level, a hierarchical aggregation mechanism is introduced to fuse features of different time
granularities and component levels. Specifically, based on the local representation iz , weighted aggregation
is performed through global attention to obtain the global context representation:
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Where adRu is the global context vector. This mechanism enables the model to take into account both
global dependencies between components and long-term trends across time steps. Finally, the local
representation is concatenated with the global representation and input to the prediction layer:
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)(f is a feedforward neural network that outputs the predicted value of scheduling delay. Through this
hierarchical attention design, the model can accurately model scheduling delay at multiple granularities and
dependency levels, thus having stronger expressiveness and adaptability in complex backend scenarios.



4. Experiment result
4.1 Dataset
The dataset used in this study comes from Alibaba Cluster Trace 2018. It consists of real scheduling and
operation logs collected from a large-scale cloud computing platform. It covers extensive information about
task scheduling and execution in distributed environments. The dataset includes multiple resource usage
indicators, such as CPU, memory, disk, and network. It also provides job submission time, execution time,
and task dependency relationships. This rich information offers a solid foundation for modeling and
analyzing backend scheduling delay. It allows research to be carried out under conditions close to real
production environments.

The dataset is large in scale. It contains tens of thousands of jobs and millions of task entries, spanning
several days. The data is mainly presented in the form of logs and tables, including both task-level and job-
level information. For example, the task logs record precise scheduling start and finish times, dynamic
changes in resource consumption, and call chains among tasks within a job. These fine-grained time series
data enable detailed analysis of the distribution of scheduling delay and the underlying factors that influence
delay.

This dataset has strong representativeness and practical value. It reflects real task characteristics and
scheduling patterns in production environments. Researchers can use it to develop delay prediction and
optimization methods with practical significance and transferability. In addition, its rich multidimensional
features provide strong support for building complex models. They help explore how different features
contribute to delay prediction and further promote the intelligent development of backend scheduling systems.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method MSE MAE RMSE MAPE

Transformer[13] 0.324 0.388 0.569 6.82%

FedFormer[14] 0.301 0.365 0.548 6.41%

ITransformer[15] 0.279 0.349 0.528 6.07%

TimeMixer[16] 0.265 0.336 0.515 5.69%

Ours 0.241 0.315 0.491 5.52%

From Table 1, it can be observed that the traditional Transformer performs relatively poorly in backend
scheduling delay prediction. Its MSE, MAE, and RMSE are all at the highest levels, and its MAPE reaches
6.82%. This result indicates that although the Transformer has strong sequence modeling ability, it is still
insufficient in capturing features under complex task dependencies and multidimensional resource constraints.
It struggles to represent the multi-level dynamic patterns of delay with precision.
Compared with the Transformer, FedFormer, iTransformer, and TimeMixer all show improvements to
varying degrees. FedFormer demonstrates better performance in capturing global features, with significant
reductions in MSE and RMSE, highlighting its advantage in long sequence processing. iTransformer further
enhances adaptability to input features through structural improvements, resulting in reduced MAE and



MAPE errors. TimeMixer shows performance closest to Ours, suggesting that fusion-based modeling has
strong potential in handling complex delay prediction problems. It effectively alleviates the shortcomings of
traditional models in neglecting multi-granularity dependencies.
Among all methods, the proposed model Ours achieves the best results across all four metrics. In particular, it
shows significant reductions in MSE and MAE compared with TimeMixer. This indicates that the
hierarchical attention mechanism can better integrate local and global features. It provides more
discriminative and stable feature representations in scenarios with multi-level task dependencies and resource
competition, leading to more accurate delay prediction. Its strong performance in MAPE also shows good
generalization under different workload fluctuations.
Overall, the experimental results confirm the effectiveness and necessity of the hierarchical attention
mechanism for backend scheduling delay prediction. By capturing detailed features at the local level and
integrating global dependencies at the system level, the method overcomes the limitations of existing models
in feature representation and dependency modeling. It significantly improves prediction accuracy. These
findings not only demonstrate the soundness of the method design but also provide strong support for
intelligent and efficient backend scheduling systems.
This paper also presents an experiment on the sensitivity of hidden dimension size to MAPE, and the
experimental results are shown in Figure 2.

Figure 2. Experiments on the sensitivity of hidden dimension size to MAPE
From Figure 2, it can be seen that different hidden dimensions lead to variations in MAPE performance.
When the hidden dimension is small, such as 32, the MAPE value is significantly higher. This indicates that
in a low-dimensional space, the model cannot fully capture the complex feature interactions in backend
scheduling delay. As a result, prediction bias increases. This shows that too small a feature space is
insufficient to support the expressive power of the hierarchical attention mechanism.
As the hidden dimension increases, the MAPE value gradually decreases, reaching its lowest point at 128
dimensions. This suggests that at a moderate scale, the model can better integrate local and global features. It
avoids missing information while not introducing excessive redundancy, which improves both stability and
accuracy in prediction. This trend highlights the advantage of hierarchical attention in multi-granularity
feature modeling.
When the hidden dimension continues to increase to 256 and 512, MAPE shows a slight rise. This suggests
that overly large dimensions may introduce redundant features or noise, which makes optimization in high-
dimensional space more difficult. Such a situation can reduce generalization performance and interfere with



delay prediction under complex workloads. Therefore, the choice of hidden dimension requires a balance
between expressive capacity and model complexity.
Overall, the experiment shows that hidden dimension size has a significant impact on the performance of
backend scheduling delay prediction. An appropriate dimension can effectively enhance the model's
performance under hierarchical feature modeling. This sensitivity analysis provides useful guidance for
model design. It helps determine optimal parameter configurations that balance prediction accuracy and
computational efficiency, thereby better meeting the dual requirements of real-time performance and
reliability in backend systems.
This paper also presents an experiment on the sensitivity of the weight decay coefficient to MAE, and the
experimental results are shown in Figure 3.

Figure 3. Sensitivity experiment of the weight decay coefficient to MAE
From Figure 3, it can be seen that the weight decay coefficient shows clear sensitivity in relation to MAE.
When the weight decay is too small, such as 10⁻⁶, MAE remains at a high level. This indicates that under
weak regularization, the model is prone to overfitting. As a result, prediction in complex backend scheduling
environments suffers from poor generalization and higher errors.

As the weight decay increases to 10⁻⁴, MAE reaches its lowest point. This result shows that moderate
regularization can effectively suppress overfitting while preserving the expressive capacity of the hierarchical
attention mechanism. In this way, the model achieves a better balance in multidimensional feature modeling
and obtains optimal performance in delay prediction.

When the weight decay is further increased to 10⁻³ and 10⁻², MAE begins to rise again. This suggests that
strong regularization reduces the learning ability of the model. The attention mechanism cannot fully capture
the complex relationships between local and global features. As a consequence, key information is lost in
feature extraction, which reduces prediction accuracy.
Overall, the results show that a proper choice of weight decay is crucial for backend scheduling delay
prediction. Too small a value leads to overfitting, while too large a value results in underfitting. Only within a
moderate range can the hierarchical attention mechanism fully demonstrate its advantage. This significantly
improves the stability and accuracy of prediction and provides reliable support for backend scheduling delay
forecasting.



This paper gives the impact of the missing rate on the experimental results, and the experimental results are
shown in Figure 4.

Figure 4. The impact of the missing rate on experimental results
From Figure 4, it can be seen that all error metrics show an upward trend as the missing rate increases. When
the missing rate is 0%, the model can accurately capture the relationship between task load and resource
usage. MSE, MAE, RMSE, and MAPE all remain at low levels. This indicates that under complete data
conditions, the hierarchical attention mechanism can fully demonstrate its advantages and achieve high-
precision delay prediction.
When the missing rate rises to 10% and 20%, the error metrics begin to increase, with MAE and MAPE
showing more obvious changes. This suggests that missing data weakens the fine-grained modeling of local
features, making it difficult to capture short-term dependencies completely. Since backend scheduling delay
is often influenced by multiple factors, missing features can interfere with the aggregation process of the
attention mechanism, thereby increasing prediction uncertainty.
When the missing rate reaches 30% or higher, the increase in error metrics becomes more significant. Both
RMSE and MAPE show sharp rises. This indicates that with a high proportion of missing data, the model's
ability to capture global features is severely weakened. The integration of local and global dependencies
becomes difficult, and prediction bias is magnified. This highlights the importance of data completeness for
hierarchical modeling and also reflects the limitations of the model in handling missing information.
Overall, the results show that the missing rate has a significant impact on backend scheduling delay
prediction. At low missing rates, the model can still maintain stable performance. However, as the missing
rate increases, the errors grow rapidly. This emphasizes the need for data preprocessing, missing value
imputation, and robust modeling methods in practical scenarios. Such approaches can ensure that the
hierarchical attention mechanism continues to perform well even in imperfect data environments, providing
reliable support for backend systems.
This paper also gives the impact of node scale changes on experimental results, and the experimental results
are shown in Figure 5.
From Figure 5, it can be seen that changes in node scale have a clear impact on model performance in delay
prediction. Under small-scale node conditions, error metrics remain relatively high, especially MSE and
MAE. This indicates that when resources are limited, the hierarchical attention mechanism can capture some
features, but insufficient parallelism and increased scheduling complexity constrain the stability of prediction.
When the node scale expands to a moderate range, such as 200 nodes, error metrics decrease significantly,
and MAPE reaches its lowest point. This shows that under moderate scale conditions, the system can better



utilize both local and global feature modeling. Task distribution is more balanced, and the attention
mechanism can achieve more effective interaction and fusion among multidimensional features, leading to
higher prediction accuracy.

Figure 5. The impact of node scale changes on experimental results
As the node scale further increases to 400 and 800, the overall performance remains good, but error metrics
show slight increases. This reflects that at very large scales, system heterogeneity and scheduling overhead
rise. As a result, the complexity of feature modeling increases, and some local dependencies are weakened.
The upward trend of MAPE indicates that large-scale deployment may increase fluctuations in prediction
results.
Overall, the experiment reveals the dual role of node scale in backend scheduling delay prediction. Too small
a scale leads to insufficient resources, while too large a scale introduces additional interference. Only within a
moderate range can the hierarchical attention mechanism achieve the best effect in both local and global
modeling. This conclusion provides important guidance for backend systems to plan node scale reasonably in
practical deployment, ensuring both prediction stability and accuracy.

5. Conclusion
This study focuses on the problem of backend scheduling delay prediction and proposes a modeling method
based on hierarchical attention. By extracting fine-grained features at the local level and aggregating global
dependencies at the system level, the method can comprehensively capture the multiple factors that cause
delay in complex task environments. Experimental results show that the method achieves superior
performance across multiple error metrics. This further demonstrates its strong adaptability and robustness in
high-dimensional and multi-constraint backend system environments. The research not only addresses the
limitations of traditional methods in prediction accuracy but also enriches performance modeling approaches
for complex distributed systems.
From an application perspective, the findings of this study provide new insights for intelligent scheduling in
backend systems. With the introduction of hierarchical attention, systems can predict potential delays more
accurately before scheduling. This enables better decisions in load balancing, resource allocation, and fault
recovery. Such capabilities are particularly valuable in large-scale cloud platforms, microservice architectures,
and data centers. They can directly improve service quality, reduce energy consumption and operational costs,
and enhance stability and scalability under conditions of high concurrency and complex dependencies.
In addition, this research provides useful references for general time series prediction and complex system
modeling. The advantage of hierarchical attention in balancing local and global features gives it potential for
cross-domain applications. It can be applied not only to backend delay prediction but also to scenarios such



as financial risk monitoring, traffic congestion prediction, and industrial production scheduling, all of which
involve multidimensional dependencies. This cross-domain applicability further highlights the theoretical and
practical value of the proposed method and offers guidance for intelligent decision-making in complex
systems.
Looking ahead, there is still room for further development. On the one hand, the model can be extended by
incorporating more advanced environment modeling and adaptive mechanisms, making it more flexible
under dynamic workloads and resource states. On the other hand, integration with techniques such as data
repair and anomaly detection can enhance robustness when dealing with missing values, noise, and abnormal
conditions. Moreover, combining the method with frontier approaches such as reinforcement learning and
graph neural networks could enable dynamic optimization of multi-level dependencies. Through these
directions, future systems will not only achieve more accurate delay prediction but also advance toward
greater efficiency, intelligence, and autonomy in backend scheduling.
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