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Abstract: This study proposes a multi-scale deep learning-based detection method to address the
complexity, dynamics, and diversity challenges of anomaly detection in cloud service systems. By
introducing multi-scale feature extraction and cross-scale fusion mechanisms, the method effectively
characterizes system behavior evolution across different temporal granularities, enabling the capture of both
short-term burst anomalies and long-term structural anomalies to improve detection comprehensiveness and
accuracy. In terms of model architecture, hierarchical feature modeling and context-aware mechanisms are
employed to achieve a deep representation of semantic associations and temporal dependencies among
multidimensional metrics. In addition, an uncertainty estimation module is introduced to calibrate boundary
samples and low-confidence predictions, which effectively reduces false positives and false negatives and
enhances system stability and robustness in highly dynamic environments. The method is also
systematically evaluated under various environmental factors, including hyperparameter variations, resource
interference, sampling granularity, and data distribution drift. Experimental results show that it outperforms
existing methods on multiple key metrics and demonstrates strong adaptability and discriminative power.
Overall, the proposed multi-scale detection framework provides reliable technical support for intelligent
operation, automated anomaly management, and complex service state monitoring in cloud computing
systems, offering an effective solution for ensuring stability in large-scale distributed environments.
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1. Introduction
With the rapid development of cloud computing and distributed systems, digital infrastructure has become
the core support for modern socio-economic operations. Various internet services, enterprise applications,
and data-intensive tasks rely on cloud platforms for computing, storage, and network resources. However, as
service scale continues to grow and business logic becomes increasingly complex, system states exhibit high
dynamics and uncertainty. Abnormal behaviors occur frequently and can lead to serious consequences. Issues
such as service latency, throughput degradation, system crashes, or even data loss often stem from abnormal
events such as resource scheduling imbalance, dependency failures, request pattern shifts, or external attacks.
Because these anomalies are sudden, hidden, and diverse, failure to detect and respond to them in time can
significantly impact business continuity and user experience. Therefore, achieving high-precision, real-time,
and robust anomaly detection in complex and evolving cloud environments has become a crucial research
topic for ensuring the reliability and stability of cloud services[1].



Traditional anomaly detection methods are mainly based on rule matching, statistical modeling, or simple
machine learning techniques. These approaches were effective in earlier systems with simpler architectures
and stable data distributions, but their limitations have become increasingly evident as cloud systems have
evolved. Static rules and threshold strategies cannot handle data distribution drift caused by dynamic
workloads and adaptive scheduling. At the same time, conventional models often rely on fixed features and a
single time scale, making them unable to capture complex multidimensional dependencies and cross-
temporal anomaly patterns effectively. Moreover, cloud environments feature multi-tenant sharing,
heterogeneous resource interactions, and cascading services, where anomalies may manifest not only as
single-point deviations but also as structural anomalies, behavioral chain anomalies, or context-related
anomalies. These new characteristics impose higher demands on detection methods in terms of generalization,
context modeling, and multi-scale perception capabilities[2].
In this context, deep learning offers new solutions for anomaly detection in cloud services. Leveraging the
strong representation capabilities of deep neural networks, it is possible to automatically learn complex
nonlinear feature representations from massive monitoring data and identify high-dimensional patterns and
latent relationships that traditional methods fail to capture. However, anomalies in cloud environments often
span multiple time scales. Short-term fluctuations may indicate sudden requests or transient disturbances,
while long-term trends may reflect performance degradation or potential risks. Therefore, deep models based
on a single time granularity struggle to balance global situational awareness with local detail recognition.
Multi-scale deep learning methods have emerged to meet this need by jointly modeling different time
windows, feature levels, and semantic abstraction layers[3]. This enables the model to capture rapid changes
at the micro level while grasping evolving trends at the macro level, providing a more comprehensive, fine-
grained, and interpretable perspective for anomaly detection.
Furthermore, multi-scale deep learning not only excels at feature extraction but also introduces structured
temporal modeling and contextual correlation modeling mechanisms into anomaly detection. Through multi-
level feature fusion and attention allocation, the model can identify critical anomaly signals within complex
metric systems and understand causal chains and interaction relationships among metrics. At the same time,
multi-scale modeling provides richer semantic support for anomaly localization and root cause analysis,
shifting detection systems from simple "whether an anomaly exists" judgments to a deeper understanding of
"where and why anomalies occur." This transformation is significant for building automated operations,
intelligent scheduling, and self-healing systems. It also lays a solid foundation for the intelligent and
autonomous management of cloud services[4].
In summary, anomaly detection for cloud environments is evolving from static thresholds and shallow
learning toward multi-scale deep learning approaches. This research direction not only addresses the
challenges of increasingly complex anomaly behaviors, high-dimensional data structures, and diverse
temporal characteristics in modern cloud systems but also holds strategic significance for advancing
reliability engineering and intelligent operations. By introducing multi-scale deep learning algorithms, future
anomaly detection systems are expected to achieve higher detection accuracy, stronger adaptability to
different scenarios, and more comprehensive knowledge extraction capabilities. These advancements will
provide robust support for the secure operation of large-scale cloud infrastructures and drive cloud platforms
toward greater intelligence, adaptability, and autonomy[5].

2. Related work
The research on anomaly detection in cloud services originated from the need to ensure the stability and
availability of large-scale distributed systems. Traditional approaches mainly relied on rule-based strategies
and statistical models. These methods typically identify data points that deviate from normal behavior by
setting predefined thresholds, patterns, or distribution parameters. They are simple to implement and offer
strong interpretability. However, as system structures become more complex, workloads become more
dynamic, and anomaly types become more diverse, static rules struggle to adapt to rapidly changing service



environments and often lead to missed detections or false alarms. Statistical modeling methods are limited
when dealing with high-dimensional and nonlinear features. They also require extensive prior knowledge and
manual intervention, making it difficult to capture potential contextual relationships. These limitations make
traditional approaches inadequate for handling the complex anomaly patterns in modern cloud services,
laying the groundwork for introducing deep learning methods with stronger representation capabilities[6].
In recent years, deep learning-based approaches have gradually become the mainstream direction. Through
models such as convolutional neural networks, recurrent neural networks, and self-attention architectures,
researchers have explored how to automatically extract high-dimensional representations from raw
monitoring data for end-to-end anomaly detection. These methods can adapt to nonlinear, non-stationary, and
high-dimensional time series data distributions and demonstrate significant advantages in detection accuracy
and generalization ability[7]. At the same time, deep learning models enable cross-dimensional feature
modeling and multimodal data fusion. As a result, anomaly detection is no longer limited to a single metric
but can jointly analyze multiple dimensions, such as request load, resource utilization, and call chain
relationships. However, traditional deep models often focus on fixed time granularity and have limited
awareness of feature evolution across different time scales. This makes it difficult to meet the combined
detection requirements for short-term fluctuations and long-term trends.
To address this challenge, multi-scale deep learning methods have emerged in the field of cloud service
anomaly detection. These methods extract features across different time windows, frequency decomposition
levels, or semantic abstraction layers to build multi-scale representations with hierarchical awareness. This
enables the model to capture both local burst anomalies and global evolution patterns. Typical multi-scale
architectures often combine convolution and attention mechanisms, as well as short-term modeling and long-
term dependency modeling[8]. They improve detection sensitivity and enhance the model's adaptability to
complex anomalies. In addition, multi-scale feature fusion strategies allow the model to achieve interaction
and collaboration across different information levels, further improving anomaly localization and pattern
recognition accuracy. Compared with traditional deep models, this approach is better suited for handling the
multi-dimensional evolution of heterogeneous data in complex cloud environments and demonstrates
stronger robustness and transferability in highly dynamic scenarios[9].
At the same time, recent research has focused on integrating anomaly detection with system structure
modeling and contextual reasoning to improve interpretability and operational applicability. Some studies
have introduced graph neural networks and causal inference mechanisms to incorporate service call
dependencies, resource competition, and topology evolution into the modeling process. This allows anomaly
propagation paths and potential root causes to be described from a structural perspective. Other research has
attempted to enhance model representation capabilities through multi-task learning, self-supervised
pretraining, and contrastive learning, enabling stable performance under conditions of data scarcity and
distribution shifts. These advances show that cloud service anomaly detection is evolving from single-metric
detection toward structured, context-aware, and knowledge-driven approaches. As the core technical pathway
of this transformation, multi-scale deep learning not only improves detection performance but also provides a
solid algorithmic foundation for system autonomy and intelligent operations[10].

3. Method
This study proposes a cloud service anomaly detection method based on multi-scale deep feature modeling.
By integrating hierarchical time series modeling with contextual dependency analysis, the method enables
precise identification and representation of abnormal behaviors in complex and dynamic environments. Its
core idea is to model both short-term fluctuations and long-term trends simultaneously. Through multi-scale
feature extraction, temporal dependency aggregation, and anomaly representation generation, it builds a deep
detection framework with both global awareness and local sensitivity. Compared with traditional approaches,
the proposed method can not only capture fine-grained local anomaly signals but also understand the



evolutionary logic of system behaviors from a global perspective, thereby improving detection stability and
robustness. The model architecture is shown in Figure 1.

Figure 1. Overall model architecture
First, the cloud service system's monitoring sequence in the time dimension is formalized as a multivariate
time series  TxxxX ,...,, 21 of length T , where the data vector d

t Rx  at each time step represents the
system's multidimensional indicator state at time t . To capture the evolutionary characteristics at different
time scales, we introduce a multiscale decomposition operator )(F to decompose the original sequence into
a set of subsequences  )()2()1( ,...,, KXXX at K scales, where each subsequence retains the dynamic
characteristics at a specific time granularity. This process can be formalized as:

After obtaining multi-scale subsequences, we construct a deep feature extractor for each scale to capture
temporal dependencies and contextual information. Let the sequence input of scale k be )(kX , and the deep
temporal feature )(kH is extracted through the parameterized mapping function )( k , which is defined as
follows:

Where k represents the learnable parameters of the k -th scale model. This feature extractor is usually
combined with convolution, attention, or recursive structures to adapt to the dependency structure and pattern
complexity at different scales.
To further fuse multi-scale features and achieve global context modeling, we designed a weighted
aggregation mechanism to uniformly map representations of all scales into a shared semantic space.
Specifically, let the fusion weight be k , then the global representation Z can be expressed as:



This aggregation strategy can dynamically allocate attention among features at different temporal levels,
enabling the model to maintain adaptive feature selection capabilities in complex scenarios.
After obtaining the fused representation Z , we introduce the anomaly representation function )( to map
the context information into an anomaly score vector s . The process can be formalized as:

Where  represents the parameters of the anomaly discrimination module, and each element of s
corresponds to the anomaly intensity of the input sequence at different time steps. This module is designed to
extract deviation patterns from the fused representation, thereby providing a separable feature basis for
anomaly decision making.
Finally, to improve the model's discriminative ability in complex dynamic environments, this study
introduces a context-constrained distribution modeling mechanism to model the probabilistic characteristics
of anomaly scores to characterize the uncertainty of the system state. Assuming that the anomaly score
follows a parameterized distribution )|( Zsp , the optimization objective can be expressed as maximizing the
conditional likelihood:

This distribution modeling process enables the model to not only identify anomalies but also quantify their
confidence levels, providing a theoretical basis for subsequent decision support and risk assessment.
In summary, the multi-scale deep learning method proposed in this study builds an end-to-end anomaly
detection framework through multi-level mechanisms, including feature decomposition, temporal modeling,
contextual fusion, and probabilistic characterization. This framework combines global structural awareness
with local dynamic responsiveness, effectively addressing the challenges of complex anomaly types, diverse
time scales, and multidimensional dependency structures in cloud service systems. It provides a scalable
solution for ensuring stability and enabling intelligent operations in large-scale cloud computing
environments.

4. Experimental Results
4.1 Dataset
This study uses the "Cloud Resource Usage Dataset for Anomaly Detection" as the dataset for algorithm
validation. The dataset is derived from real resource usage monitoring in cloud environments and focuses on
anomaly patterns caused by resource misuse or abnormal behaviors in multi-tenant settings. It contains
multidimensional time-series metrics such as CPU utilization, memory usage, disk I/O, and network
throughput. Anomalous samples are constructed based on resource overload scenarios, which allows for the
evaluation of anomaly detection algorithms in terms of applicability and robustness in cloud service
scenarios. The dataset is publicly available on Kaggle and has become a suitable benchmark in cloud service
anomaly detection research due to its practicality and representativeness.
The dataset records system states using periodic sampling and provides continuous timestamp indexing with
multivariate feature structures. It includes complete monitoring logs during both normal operation and
anomaly injection phases, which support comparative analysis, segmented validation, and model training
under a unified standard. In addition, the dataset is specifically designed with resource overload conditions
and anomaly transition phases, simulating potential load fluctuations, sudden request spikes, and anomaly



patterns triggered by service failures in real cloud systems. This design aligns well with multi-scale time
series analysis methods and provides rich scenario support for evaluating a model's detection capability
across different time granularities.
Using this dataset for model validation clearly demonstrates the advantages and potential of multi-scale deep
learning in cloud anomaly detection. Training and validating the model on this dataset allows for the
assessment of its ability to identify short-term burst anomalies, long-term trend anomalies, and hybrid
anomalies. Experiments based on this dataset can showcase the model's performance in handling dynamic
workloads, heterogeneous resource interactions, and complex dependency structures in cloud service
systems. This provides valuable references for improving the reliability of cloud computing platforms.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table1: Comparative experimental results

Model Precision Recall F1-Score AUC
MEMTO[11] 0.842 0.801 0.821 0.912
DDMT[12] 0.865 0.790 0.826 0.918
MIXAD[13] 0.831 0.815 0.823 0.907
LATAD[14] 0.853 0.798 0.824 0.914
Ours 0.883 0.833 0.857 0.935

The experimental results show that the proposed multi-scale deep learning method demonstrates significant
performance advantages in cloud service anomaly detection tasks. Compared with MEMTO, which is based
on memory enhancement, and DDMT, which is based on diffusion modeling, the proposed method achieves
higher Precision and Recall scores, reaching 0.883 and 0.833, respectively. This indicates that the model can
maintain high detection accuracy while improving coverage of anomalous samples. As a result, it shows
stronger discriminative power when facing sudden, non-stationary, and long-tail anomaly patterns in cloud
systems. The multi-scale feature extraction and contextual fusion structure enable the model to perceive both
short-term fluctuations and long-term trends, resulting in more comprehensive anomaly detection in complex
and dynamic environments.
The improvement in the F1-Score further verifies the superiority of the proposed method in terms of overall
detection capability. Compared with methods such as MIXAD and LATAD, the F1-Score of the proposed
method improves to 0.857. This demonstrates that multi-scale modeling not only achieves breakthroughs in
single metrics but also maintains a balance between precision and recall. Cloud service anomaly detection
tasks are often affected by multidimensional interactions, complex dependency structures, and contextual
drift. Traditional models usually fail to balance global trend awareness and local detail recognition. The
proposed method addresses this problem by introducing cross-scale feature fusion and temporal attention
modulation, significantly improving adaptability to diverse anomaly behaviors.
The improvement in the AUC metric indicates that the model has stronger robustness and generalization in
terms of overall discrimination capability. Compared with recent methods such as DDMT and LATAD, the
proposed model achieves an AUC of 0.935, showing that it maintains a high level of separation between
normal and anomalous states across different thresholds. This performance benefits from the introduction of
uncertainty modeling and distribution estimation modules, which characterize boundary samples
probabilistically and calibrate their confidence. This reduces the risk of false positives and false negatives and
improves the reliability and interpretability of the detection system. This capability is particularly important
for handling soft anomalies, cascading anomalies, and dependency chain anomalies in cloud environments.



Overall, the experimental results fully validate the effectiveness and advancement of the proposed multi-scale
deep learning method in cloud service anomaly detection. It not only outperforms representative recent
methods across multiple key metrics but also demonstrates strong adaptability to complex distributions,
multi-granularity temporal features, and various anomaly types. These advantages enable the model to
provide stable and accurate anomaly detection support in dynamic multi-tenant cloud environments, laying a
solid technical foundation for automated operations and intelligent resource scheduling.
This paper also conducted a comparative experiment on the hyperparameter sensitivity of multi-scale window
length and decomposition layer number to anomaly capture ability. The experimental results are shown in
Figure 2.

Figure 2. Hyperparameter sensitivity experiment of multi-scale window length and decomposition layer
number on anomaly capture ability

The results show that as the window length and decomposition depth increase from W32-L2 to W128-L4, all
four metrics improve steadily. Precision rises from 0.842 to 0.883, Recall from 0.792 to 0.833, F1-Score from
0.816 to 0.857, and AUC from 0.914 to 0.935. This trend indicates that a longer temporal receptive field and
deeper scale decomposition can more effectively integrate short-term fluctuations with medium- and long-
term evolution patterns. As a result, contextual relationships across different metrics are strengthened in a
unified representation space, improving the separability of various types of anomalies in cloud services,
including bursty, gradual, and context-dependent patterns.
When the configuration is further expanded to W160-L5, Precision and F1-Score show a slight decline to
0.879 and 0.855, while Recall and AUC remain mostly stable at 0.831 and 0.933. This suggests that longer
windows and deeper decompositions introduce more redundancy and noise, causing diminishing returns and
a mild over-smoothing effect. The ability to distinguish weak signals and boundary samples slightly
decreases, but the overall threshold-independent discriminative capability remains stable. For cascading and
soft anomalies in cloud environments, this reflects a structural trade-off between broader coverage and
sharper discrimination.
From the perspective of metric synergy, the leading Precision combined with the steady rise of Recall results
in continuous improvement of the F1-Score. This demonstrates the dual contribution of cross-scale fusion in
reducing false positives and increasing recall. The monotonic increase of AUC up to W128-L4 shows that the
ranking quality and distribution separation across all thresholds are continuously optimized. This aligns with
representation calibration under uncertainty constraints. Multi-scale features achieve more consistent decision
boundaries during the fusion stage, and anomaly score distributions become more concentrated in high-
confidence regions, which stabilizes the global advantage in ROC space.
Considering the temporal variability of cloud service metrics and multi-tenant interference, W128-L4 can be
regarded as the effective capacity limit of the receptive field and decomposition depth. It covers the key time
windows of business periodicity and resource fluctuations while avoiding signal dilution caused by deeper



decomposition. The performance peak at this configuration reflects strong structural alignment of cross-scale
attention in capturing complex patterns such as request surges, link congestion, and resource jitter. The slight
performance decline at W160-L5 suggests the need for adaptive calibration and regularization to suppress
redundancy accumulation caused by excessive decomposition. This helps multi-scale representations
maintain discriminative sharpness and generalization robustness in complex cloud scenarios.
This paper also evaluates the environmental sensitivity under resource interference (CPU jitter, memory
pressure, I/O congestion) scenarios. The experimental results are shown in Figure 3.

Figure 3. Environmental sensitivity assessment in resource interference scenarios (CPU jitter, memory
pressure, I/O congestion)

As the intensity of resource interference gradually increases, precision drops from 0.910 to 0.800, showing an
almost linear decline. This indicates that when CPU jitter, memory pressure, and I/O congestion overlap, the
"sharpness" of the anomaly score distribution decreases, making false positive control more difficult. For a
detector based on multi-scale representations, this trend suggests that local decisions in short and medium
windows are more easily polluted by transient noise, reducing cross-scale consistency and weakening high-
confidence decision boundaries. In particular, under I/O congestion, queue buildup, and tail latency diffusion
broaden local peaks, causing the most significant loss of separability in the high-threshold region.
Recall decreases from 0.830 to 0.770 and then rebounds to 0.790 in the I/O scenario, showing a non-
monotonic "drop-then-rise" trend. This reflects that under memory pressure, detecting weak, context-
dependent anomalies is the most challenging. However, the persistent queuing and stability degradation
caused by I/O congestion generate long-term structural signals that are easier to detect. For the proposed
method, this indicates that cross-scale fusion requires stronger short-window enhancement and noise
suppression when dealing with "sparse and short-lived" memory disturbances. In contrast, for "persistent and
expanding" I/O anomalies, the method should increase the weight of long windows and enhance contextual
aggregation along latency chains to maintain recall elasticity.
F1-Score decreases from 0.865 to 0.780, following the combined effect of Precision and Recall. The most
significant decline occurs during the memory pressure phase, indicating that phase misalignment and inter-
metric asynchrony caused by multidimensional resource contention most severely disrupt representation
consistency. This suggests that multi-scale attention needs to adaptively adjust channel weights and temporal
receptive fields under resource constraints, while uncertainty constraints should stabilize boundary samples.
Otherwise, with fixed decomposition depth and window length, the fusion layer will amplify phase shifts
across metrics, directly reducing overall discriminative capability.
AUC drops from 0.950 to 0.880, showing a clear monotonic degradation. This indicates that ranking quality
and separability across all thresholds continuously weaken under the three types of interference, with I/O
congestion having the strongest impact. Combined with the previous metrics, it can be inferred that
distribution-level confidence calibration undergoes systematic shifts under resource interference. CPU jitter
introduces high-frequency noise, memory pressure intensifies intermittent congestion, and I/O congestion



increases tail latency. Together, these factors compress the margin between anomalous and normal states.
Therefore, it is necessary to introduce adaptive calibration feedback at the methodological level to
dynamically reallocate cross-scale weights and threshold ranges, ensuring that ranking boundaries maintain
sufficient margin and stability under different interference mechanisms.
This paper also analyzes the environmental sensitivity of changes in observation granularity and sampling
frequency to the ability to discriminate time series. The experimental results are shown in Figure 4.

Figure 4. Experiment on the environmental sensitivity of changes in observation granularity and sampling
frequency to temporal discrimination ability

In terms of sampling frequency, Precision increases steadily from 1 Hz to 10 Hz and approaches saturation
(0.862 → 0.892). This indicates that higher temporal resolution allows multi-scale representations to capture
finer-grained burst fluctuations and boundary transitions, forming sharper decision boundaries in high-
threshold regions and reducing the probability of false positives. As the frequency increases, the short-
window branch becomes more responsive, and its contribution to cross-scale fusion increases. This
concentration of high-confidence anomaly samples leads to improved Precision.
Recall shows an inverted U-shaped trend, peaking at 5 Hz and slightly decreasing at 10 Hz (0.808 → 0.842
→ 0.835). This suggests that in the mid-to-high frequency range, the model achieves the most comprehensive
coverage of weak and context-dependent anomalies. However, when the frequency increases further, the
proportion of transient noise and micro-disturbances rises. The short-window branch becomes more sensitive
to noise, and if the fusion layer lacks sufficient denoising and uncertainty suppression, low-intensity
anomalies may become dispersed or be masked by short-term pseudo-peaks, leading to a slight decrease in
Recall. This indicates the need for adaptive calibration of channel weights and threshold ranges under high-
frequency inputs to ensure that coverage is not dominated by noise.
In terms of observation granularity, the F1-Score reaches its highest value at medium granularity (5 min) with
0.854, then drops to 0.846 and 0.812 at coarser granularities (10 min and 30 min). This shows that excessive
temporal aggregation weakens short-term structures and phase differences, which degrades the combined
performance of precision and recall. Moderate aggregation can mitigate the jitter caused by high-frequency
noise and isolated anomaly points, providing more stable contextual support for cross-scale attention in
medium and long windows, which improves overall classification consistency. However, when the window is
further extended, local anomaly patterns become overly smoothed. Although cross-scale consistency
increases, it comes at the cost of reduced separability.
AUC decreases monotonically as granularity becomes coarser (0.932 → 0.895), indicating that ranking
quality across all thresholds is highly sensitive to observation granularity. Coarser aggregation causes
information blending and distortion, compressing the distribution gap between weak or short-term anomalies
and normal states after aggregation, which reduces global separability in the ROC space. For cascading
anomalies and tail latency diffusion scenarios in cloud services, this means that finer observation granularity
should be prioritized to preserve edge structures. Cross-scale fusion at the medium-window level should be
used to impose stability constraints. When storage or data collection costs require coarser granularity,



uncertainty calibration and de-mixing modeling should be introduced to compensate for the loss of
separability caused by temporal aggregation.

5. Conclusion
This study addresses the complexity of anomaly detection in cloud service environments and proposes a
multi-scale deep learning-based detection method to tackle challenges such as strong system dynamics,
diverse anomaly patterns, and complex contextual dependencies. By introducing multi-scale temporal feature
modeling, cross-scale semantic fusion, and uncertainty estimation mechanisms, this work builds an end-to-
end detection framework capable of capturing both local variations and global trends. Compared with
traditional approaches, the proposed method shows significant advantages in anomaly pattern recognition,
boundary sample discrimination, and global robustness, providing a new technical pathway for enhancing the
stability and reliability of cloud computing systems. The findings demonstrate that the multi-scale
architecture not only improves the discriminative accuracy of the model but also enhances its ability to
perceive the evolution of anomaly contexts, offering a more detailed feature representation foundation for
intelligent monitoring in complex scenarios.
From a technical perspective, the proposed method addresses the limitations of traditional approaches in
single-scale feature extraction and discrimination capability by leveraging multi-granularity time windows
and deep semantic modeling. The cross-scale feature fusion mechanism enables complementary integration
of information from different temporal granularities, allowing the model to adapt to a wide range of anomaly
behaviors, from short-term fluctuations to long-term evolutions. Additionally, the introduction of uncertainty
estimation strategies enables probabilistic modeling of boundary samples and weak anomalies, reducing both
false positive and false negative rates. The combination of multi-scale representation and confidence
constraints provides important insights for building more intelligent and interpretable anomaly detection
systems and offers a scalable theoretical framework for future research.
From an application perspective, this study holds strong practical significance. As the scale of cloud
computing platforms continues to grow and business complexity increases, the types and impacts of system
anomalies are expanding exponentially, making traditional static detection approaches insufficient for
automation and service continuity requirements. The proposed multi-scale detection method maintains stable
performance under different resource states, workload patterns, and service topologies, providing a unified
modeling foundation for anomaly detection, root cause analysis, and fault prediction tasks. This capability not
only delivers direct value to core domains such as data center operations, automated scheduling, and cloud
resource management but can also be extended to applications such as financial risk monitoring, industrial
IoT anomaly diagnosis, and intelligent manufacturing quality control, offering strong support for intelligent
operations across industries.
Looking forward, the multi-scale deep detection framework proposed in this study can be further extended in
several directions. On one hand, integrating federated learning and privacy-preserving mechanisms can
enable collaborative anomaly detection across organizations and platforms, providing more secure and
trustworthy operational solutions for multi-tenant cloud environments. On the other hand, future research can
explore the integration of large models and knowledge graphs into anomaly semantic modeling, enhancing
interpretability and scalability through structured knowledge and contextual reasoning. Moreover, combining
this framework with adaptive resource scheduling, proactive fault tolerance mechanisms, and intelligent
decision-making systems may enable a shift from "passive detection" to "proactive defense," laying a crucial
technological foundation for cloud computing platforms and broader distributed intelligent systems.
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