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Abstract: This study addresses the problems of unstable cooperative behaviors, insufficient cognitive
structure, and limited interpretability in multi agent systems under complex task conditions and proposes an
explainable cognitive planning framework. The framework constructs multi level cognitive representations
that map environmental states, historical interactions, and local observations into internal cognitive
embeddings and builds a joint intention representation to capture cross agent cooperation and task
dependencies. A consistency alignment mechanism is introduced at the planning layer to ensure that high
level cognitive goals impose structured constraints across agents and lead to more coordinated low level
action strategies. To enhance system transparency, an interpretability module is integrated to analyze causal
chains and show how cognitive factors contribute to decision generation, forming a complete interpretable
path from cognitive modeling to policy planning and behavior execution. Experimental results show that the
method outperforms existing approaches in task success rate, long term return, coordination efficiency, and
explanation fidelity and maintains strong stability and robustness under varying data scales, environmental
disturbances, and task distribution shifts. The study verifies the essential role of cognitive structure and
interpretability in multi agent cooperation and provides a unified perspective for integrating cognition and
planning in intelligent systems operating in complex environments.
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1. Introduction

In the rapid development of multi agent systems, the need for coordinated planning, stable decision making,
and global controllability in complex tasks has become increasingly prominent[1]. As the number of agents
grows and interaction structures become more complex, traditional rule driven or locally guided cooperation
approaches are no longer sufficient for dynamic environments, high dimensional state spaces, or long term
dependencies. In many critical domains, multi agent systems have taken on core functions such as resource
allocation, task assignment, risk mitigation, and strategic interaction. Yet the decision processes remain
highly opaque. This lack of transparency reduces system reliability and controllability and further limits large
scale deployment in high risk settings. Building a unified planning framework that integrates cognitive ability,
cooperative capability, and interpretability has therefore become an essential direction for intelligent systems
operating in complex environments.

The essence of multi agent cooperation lies in the accumulation of cognitive differences, information
heterogeneity, and goal conflicts among agents under dynamic environments. These factors make it difficult
for traditional methods to achieve stable and efficient collaboration. As task scales expand, systems must
form a shared understanding of environmental states, strategic intentions, and global objectives under



distributed, non stationary, and partially observable conditions. However, existing approaches often handle
only local dependencies or static policy patterns. They struggle to capture integrated cognitive structures
across time, agents, and tasks. Without a unified form of cognitive modeling, agents rely on experience
driven or locally optimal decisions during planning. This leads to declines in cooperation efficiency and may
even produce policy conflicts or behavioral drift, which creates significant risks in complex tasks[2].

Interpretability has become a critical factor in multi agent planning frameworks. As applications extend to
transportation scheduling, energy management, emergency response, and public safety, systems must explain
interaction logic, decision rationale, and global cooperation processes. Without this, they cannot meet
deployment requirements or satisfy risk auditing and regulatory needs. Interpretability affects transparency,
decision compliance, robustness, and human machine collaboration. Yet interpretability in multi agent
systems is not limited to explaining individual behaviors. It must also describe cognitive structures,
interaction patterns, and causal chains across agents. This is far more complex than conventional single agent
explanations and places higher demands on framework design[3].

Meanwhile, real world collaborative tasks increasingly involve dynamic coupling, multiple objectives, and
diverse resource constraints. Agents must understand their own goals, infer the intentions of others, detect
implicit constraints, and develop generalizable planning strategies in high dimensional spaces. To meet these
needs, systems require cognitive abilities similar to those in human problem solving. These include task
decomposition, causal reasoning, strategy tracing, and intent modeling. Introducing cognitive mechanisms
into planning can improve strategy consistency across agents and stabilize collaborative behaviors. It also
strengthens system adaptability under changing environments. However, substantial gaps remain. These
include how to construct unified cognitive structures, how to share and update cognitive representations
among agents, and how to integrate interpretability into planning without harming policy performance.

Given these challenges, a multi agent planning framework that integrates cognitive modeling with
interpretability holds significant theoretical and practical value. Such a framework can shift systems from
reactive decision making to understanding driven coordination and provide a structured basis for building
trustworthy, efficient, and transparent intelligent systems. In real world applications, it can support reliable
cooperation in complex environments and enhance stability, controllability, and safety. In theory, it can
promote the integration of multi agent intelligence, cognitive science, causal reasoning, and interpretable
artificial intelligence. By jointly addressing cognitive structures, cooperation mechanisms, and interpretability,
the framework enables full chain optimization from low level policy coupling to high level intention
coordination. This brings a systematic improvement in intelligent behavior for complex tasks.

2. Related work

Multi agent cooperation research initially focused on traditional topics such as distributed control, game
strategies, and task decomposition. It mainly emphasized policy optimization under incomplete information
and dynamic environments[4]. However, as system scale has grown and task complexity has increased, these
methods have shown limitations in handling high dimensional perception, long term dependencies, and multi
task coupling. Classical approaches based on reinforcement learning and joint policy optimization can
alleviate strategy conflicts among agents to some extent. Yet they lack structured knowledge modeling
capabilities and therefore struggle to maintain stable cooperation in complex scenarios. To improve policy
consistency, some studies introduce centralized training, decentralized execution, value decomposition, and
attention mechanisms. These designs still fail to resolve the coordination difficulties caused by cognitive
differences among agents. In addition, traditional cooperation methods generally lack explanatory power,
which makes it difficult in real deployments to answer key questions about policy origins, interaction logic,
and decision rationale.

In recent years, the development of explainable artificial intelligence has pushed multi agent systems toward
greater transparency. Existing explanation methods are often based on gradients, feature importance, policy
visualization, or causal association analysis. They are mainly used to show the behavioral basis of a single



agent. Such methods usually rely on post hoc analysis and are relatively independent from the operating
mechanism of the system[5]. As a result, they cannot provide reliable behavioral explanations during
cooperative decision making. As multi agent applications enter high risk domains, research attention has
shifted from explaining individual actions to explaining structures of cooperative behavior[6]. The emphasis
is to introduce interpretability at the decision generation stage rather than only performing visual
backtracking after the decision is made. Some studies have begun to explore collaborative explanation
techniques, such as structural visualization, variance decomposition, and interaction weights. Most methods
still remain at weak forms of explanation or at task related correlation displays. They cannot fully describe
how cognitive consistency is formed among agents and cannot clearly portray cooperative causal chains
across tasks and over time.

With the continuous expansion of complex task scenarios, cognitive modeling in multi agent systems has
become a new research focus. Existing work explores enhanced cognitive consistency among agents through
approaches such as mind modeling, intention inference, opponent modeling, and explicit communication.
These methods often concentrate on local cognition or reasoning between two agents and lack a unified
structure that can scale to large systems. Some studies attempt to construct intermediate cognitive
representations, such as shared memory, graph based representations, and implicit coordination mechanisms,
in order to improve interaction quality and policy stability. However, current frameworks lack systematic
cognitive planning mechanisms. They cannot tightly couple higher order cognition, such as task hierarchy,
causal understanding, and policy tracing, with actual cooperative behaviors. At the same time, cognitive
modeling is often separated from interpretability[7]. As a result, systems may exhibit certain intelligent
behaviors but cannot provide human understandable decision principles. This creates credibility barriers for
deployment in critical domains.

At a higher level, the integration of cognitive planning and explainable multi agent systems is regarded as an
important trend for achieving complex task cooperation. Some studies have begun to incorporate causal
reasoning, structured knowledge graphs, hierarchical policy frameworks, or symbolic planning into multi
agent systems. The goal is to obtain stronger task understanding and transferable policies. However, these
methods often adopt modular or loosely coupled designs. Cognitive structures, cooperation mechanisms, and
explanation modules remain separated. This separation makes it difficult to achieve end to end consistency.
To build a truly task oriented cognitive planning framework, it is necessary to unify cognitive representation,
policy learning, causal modeling, and interpretability within a single architectural system. Agents should not
only understand their own behavior but also explain the cooperative process. This is essential for high
stability and high credibility in complex task execution. Current research still shows significant gaps in this
direction. These gaps leave important room for the development of a unified framework that combines
explainability, multi agent intelligence, and cognitive planning.

3. Proposed Framework

This research addresses complex task environments by constructing a unified multi-agent cognitive planning
framework, and the core objective of this framework is to enable agents to operate coherently in settings that
exhibit high uncertainty, evolving dynamics, and intricate interdependencies. By integrating perception,
internal cognition, intention modeling, and coordinated planning into a single structured architecture, the
framework allows agents to gradually form a shared cognitive understanding of the environment, the
ongoing task, and the behaviors of other agents. This shared cognition provides the foundation for
generating consistent and context-aware cooperative strategies, even when agents face incomplete
observations, asymmetric information, or conflicting sub-goals. At the same time, the framework embeds
multi-level decision mechanisms that align high-level cognitive reasoning with low-level actionable
behaviors, ensuring that strategic objectives are translated into executable plans across all agents. The model
architecture diagram of this paper, shown in Figure 1, provides an overall illustration of how cognitive
representation, joint intention formation, planning consistency, and action execution are connected within



the proposed framework, highlighting the structural flow that supports collaborative behavior in complex
multi-agent environments.
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Figure 1. Overall model architecture diagram

First, to describe the multi-agent environmental interaction process, the system constructs a cognitive
foundation based on a state transition mechanism. The change of environmental state s, with the agent's

joint action a, is defined by the following equation:
P (S¢S a;)

Building upon this foundation, agents not only need to estimate environmental dynamics but also need to

form cognitive representations of the policy intentions of other agents. Therefore, an internal cognitive state
Z; is constructed for each agent, and a mapping from state to cognitive space is established through an

inference mechanism:
Zi =f9(stlhi)
Where h; represents the historical interaction trajectory of each subject, used to depict the evolution of

cognition over time.

To achieve collaborative planning, the system constructs a joint intent representation at the cognitive layer
to capture the implicit dependency structure between agents. The joint intent can be modeled as a functional
combination of the cognitive representations of multiple agents:

¢, =9g(z122...,Zy)



Where N represents the number of agents. Based on this joint intent, the framework generates a globally
consistent planning objective in a high-dimensional policy space, achieving uniformity in cooperative
behavior by optimizing the joint value function. The joint value function is expressed as:

Q_]om (Strat) - zizyQi(St' ai,t’ Zi' (pt)

This structure ensures that cognitive representation and collaborative planning are mathematically unified,
thereby enabling a continuous reasoning chain from intention to behavior.

At the execution level, the system integrates cognitive states, intent representations, and local observations
to generate interpretable behavioral planning strategies. Strategy generation solves for the optimal action by
maximizing the planning objective, and can be represented as follows:

m,(a;,[o0;, 2; ®,) =arg m:lx Q;(spa,z;,PD,)

Here, 0,, represents a local observation of subject i. To ensure interpretability, the system introduces a

causal analysis structure, constructing a causal graph from cognitive variables to behavioral outputs to trace
the information source of the planning process. The causal dependency can be written as:

G = {(Zi - ai,t)' ((Dt - ai,t)}

The arrows indicate the causal direction and are used to clarify the independent contribution of each
cognitive element in strategy generation to the final behavior.

Furthermore, this method enhances decision-making transparency for complex tasks through a hierarchical
planning structure. In the high-level structure, the system decomposes the task based on long-term goals to
form a time-continuous planning path; in the low-level structure, it generates a sequence of executable
actions based on the current state and intent. The high-level and low-level planning are aligned for
consistency through structured constraints, and their dependencies can be formally represented as follows:
low _ high
a. =I'(@m>="s,z;)
Here, I’ is the inter-layer mapping function, used to ensure semantic consistency between high-level
cognitive planning and low-level action selection. Through the above mechanism, the framework achieves

deep integration of cognitive modeling, intent reasoning, planning generation, and interpretability in a
unified structure, providing systematic support for multi-agent collaboration in complex task scenarios.

4. Experimental Analysis
4.1 Dataset

The open source dataset used in this study is from SMAC, the StarCraft Multi Agent Challenge. It is built on
a realistic large scale adversarial strategy environment and contains multi type, heterogeneous, and strongly
coupled multi agent task scenarios. The dataset provides tactical cooperation maps with different difficulty
levels, including attack, defense, encirclement, and breakthrough tasks. These settings require the system to
perform high level planning, local strategy coordination, and cross agent information sharing in fast
changing environments. The environment states, action spaces, and reward structures in SMAC have clear
mathematical definitions, which makes it an ideal testbed for studying interpretable cooperative behaviors
and cognitive reasoning mechanisms.



The dataset contains complete global states, local observations, action sets, terrain structures, and interaction
constraints among agents. These elements provide strong data support for studying cognitive consistency,
task decomposition mechanisms, and intention modeling in multi agent systems. Each trajectory is a time
series that includes state transitions, cooperative behaviors, policy choices, and environmental feedback.
This structure allows the system to learn cognitive representations and plan behaviors in high dimensional
and partially observable settings. The multi map design of SMAC also enables models to transfer across
different task structures, which helps evaluate the framework's generalization ability in complex cooperative
tasks.

Because SMAC clearly separates individual observations from global information and provides reproducible
adversarial dynamics, it can realistically simulate the decision incompleteness and behavioral uncertainty
that arise in real world multi agent applications. This supports joint modeling at the cognitive, planning, and
execution levels. With this dataset, the framework developed in this study can make full use of temporal
dependencies, behavioral differences across heterogeneous agents, and changes in cooperation patterns. It
can then construct structured cognitive planning paths. The rich controllable variables and open interfaces
also offer natural advantages for building interpretability modules. They allow the system to present the
logic behind cooperative strategy formation in a transparent manner.

4.2 Experimental Results
This paper first conducts a comparative experiment, and the experimental results are shown in Table 1.

Table 1: Comparative experimental results

Method Episode Normalized Coordination Explanation
Win Rate | Episodic Return Efficiency Fidelity
Expel|8] 0.63 0.58 0.44 0.32
Aios|[9] 0.67 0.61 0.47 0.35
Multiagentbench[10] 0.71 0.66 0.52 0.39
Agentharm|[11] 0.74 0.70 0.55 0.41
Ours 0.82 0.78 0.63 0.54

The overall results demonstrate the clear advantages of the proposed cognitive planning framework in
complex multi agent cooperation. Compared with traditional approaches, the model achieves higher
performance in Episode Win Rate. This indicates that the system can complete multi stage and strongly
coupled tasks with greater stability. The improvement reflects the framework's stronger adaptability in
dynamic environments and under incomplete information. It shows that agents can maintain consistent
strategic directions during long term interactions and still achieve effective collaboration when facing task
conflicts or local uncertainties.

The rise in Normalized Episodic Return further shows that the framework not only increases task completion
rates but also improves reward quality throughout execution. From the perspective of cognitive structures in
multi agent systems, this improvement comes from the model's ability to form hierarchical understanding and
long term planning at the cognitive level. It reduces ineffective exploration and conflicting actions and leads
the overall strategy closer to global optimality. The gradual increase observed in the return curves of the
baseline methods suggests a trend toward more structured cooperation. The proposed model strengthens
information integration and intention consistency on this basis, which results in higher stability and better
returns.



The notable improvement in Coordination Efficiency highlights the structural advantages of the framework in
modeling cooperative behavior. This metric reflects the degree of synchronization and decision concentration
among agents in the action space. Higher values indicate tighter cooperation and fewer redundant actions.
Combined with the joint intention representation and consistency alignment mechanisms proposed in this
study, the results show that the system can generate more organized cooperative strategies. It reduces internal
conflicts and resource waste. This demonstrates that the cognitive planning module effectively enhances
behavioral consistency among agents and yields cooperative strategies with clear causal chains and execution
logic.

The strong performance in Explanation Fidelity aligns closely with the interpretability mechanisms
emphasized in the study. The model achieves higher fidelity than existing methods. This indicates that it is
more accurate and reliable in capturing key cognitive factors and linking them to decision making paths. The
high agreement between explanation signals and actual strategies reflects a unified structure across cognitive
and policy levels. The model can therefore provide explicit causal tracing. This improves transparency and
controllability and offers credible support for risk assessment and human machine cooperation in complex
task settings. It enhances the interpretability and deployment value of multi agent systems as a whole.

This paper also presents an experiment on the hyperparameter sensitivity of the joint intent dimension based
on Episode Win Rate, and this experiment is designed to examine how variations in the cognitive
representation capacity influence the stability and quality of multi-agent collaboration. By systematically
adjusting the dimensionality of the joint intent space, the analysis reveals how different levels of expressive
power in the cognitive module affect the agents' ability to maintain coherent planning and consistent task
execution. The experimental results corresponding to this sensitivity analysis are illustrated in Figure 2,
which visualizes the relationship between joint intent dimensionality and the resulting performance trend
within the proposed framework.
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Figure 2. Hyperparameter Sensitivity Experiment on Joint Intent Dimension Based on Episode Win Rate

The experimental results show that different dimensions of joint intention have a clear impact on Episode
Win Rate. This indicates that the structural scale of cognitive modeling directly determines the quality of
multi agent cooperation. When the intention dimension is low, the shared cognitive space that agents can
form is limited. It becomes difficult to capture deep dependencies across agents. As a result, overall win rates
remain low. As the dimension increases, the system can construct richer joint semantic representations. This
allows more effective intention reasoning and policy alignment among agents. Performance is highest at
moderate dimensions, such as 32, which reflects a structural balance between expressive capacity and
stability within the cognitive planning module.

When the intention dimension increases further, the win rate begins to decline. This indicates that excessively
high cognitive dimensions introduce noise and representation redundancy. The intention space becomes
overly complex. Redundant high dimensional information increases the reasoning burden of the planning



module. It may also weaken intention consistency among agents. This leads to less focused cooperative
behaviors and slight deviations in policy execution. The phenomenon reflects a common risk in complex task
cooperation in which overly expressive models struggle to achieve stable convergence.

The overall trend suggests that multi agent systems must reasonably control the expressive capacity of the
joint intention space in cognitive planning. A moderate dimension allows sufficient information sharing,
stable intention alignment, and efficient cooperative execution. The experimental results confirm the critical
role of cognitive representation structure in complex task performance. They also highlight the importance of
designing lightweight yet effective intention spaces to improve cooperation quality and policy transparency.

To further assess the robustness of the proposed approach, the study examines how different intensities of
random disturbances across multiple deployment environments affect model performance, with the
corresponding quantitative trends and comparisons summarized in Figure 3.
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Figure 3. The impact of varying levels of random disturbances in different environments on experimental
results.

As the intensity of environmental disturbances is gradually increased, the model's performance deteriorates
steadily, with all reported metrics showing a roughly monotonic decline. This indicates the direct impact of
external uncertainty on strategy stability in complex cooperative tasks. Episode Win Rate drops notably with
stronger disturbances. This suggests that as environmental states become more volatile, agents face higher
uncertainty in intention reasoning and joint planning, making it difficult to maintain stable execution paths.
The results show that the cognitive planning module has strong adaptability, but high disturbance levels still
introduce noise that disrupts the system and gradually lowers task success rates.

The trend in Normalized Episodic Return supports this finding. As disturbances intensify, long term returns
decline. This indicates that agents must spend more resources on error correction and re planning, which
reduces overall efficiency. The cognitive layer can capture environmental dynamics under low disturbance
levels. However, when disturbances accumulate, key causal cues become obscured by noise, reducing
planning quality. This reveals a core challenge of environmental sensitivity in complex task cooperation. The
model must identify critical task variables in the presence of high dimensional noise.

The decline in Coordination Efficiency shows that agents struggle to maintain consistent cooperative
behavior under strong disturbances. As noise increases, the shared cognitive structure among agents becomes



unstable. Intention alignment weakens. Joint decisions become more dispersed and less coordinated. This
result indicates that the cognitive planning framework can mitigate moderate disturbances but may be
weakened when environmental changes become severe. The cooperation chain among agents becomes less
reliable, which causes deviations as planning goals are transferred to the execution layer. The phenomenon
highlights the need to maintain cognitive consistency in dynamic environments.

The downward trend in Explanation Fidelity also deserves attention. When environmental disturbances grow,
the interpretability of the decision process becomes weaker. This suggests that cognitive elements used to
support behavioral decisions are affected by noise. The causal chain becomes less clear. The reduced match
between explanations and actual strategies reflects increasing complexity or bias in the internal intention
reasoning process. This emphasizes the importance of incorporating environmental robustness into multi
agent cognitive planning frameworks. The system must provide consistent and reliable explanations even
under high disturbance conditions to ensure transparency and controllability in cooperative settings.

The paper also systematically varies the size of the training dataset to analyze its influence on the stability
and effectiveness of the model, and the detailed performance curves under different sampling ratios are
reported in Figure 4.
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Figure 4. The impact of changes in training sample size on experimental results.

When the size of the training dataset is expanded, the model achieves noticeably better performance, as
reflected by consistently higher values on the corresponding evaluation metrics. Episode Win Rate rises
steadily with larger datasets. This indicates that richer experience sequences provide the cognitive planning
module with more complete state—action—causal information, which helps agents learn stable cooperative
strategies. Under small sample conditions, the cognitive structure cannot fully capture shared intentions or
key state features, leading to unstable policies. When the dataset becomes larger, intention consistency among
agents improves, and win rates increase significantly.

The trend in Normalized Return further confirms the importance of data scale for modeling long term
rewards. A larger training set allows the model to form more reliable value estimates in long horizon
planning and reduces bias caused by environmental randomness and local exploration. From a cognitive
perspective, more data samples enable the model to identify patterns in environmental dynamics and task
structures more clearly. This pushes the optimization process closer to global optimality. As a result, the



return curve shows a stable upward trend and reflects the efficiency of the cognitive planning module when
learning conditions are sufficient.

The increase in Coordination Efficiency indicates that larger datasets lead to more concentrated,
synchronized, and conflict free cooperative behaviors among agents. Richer training data provide a stronger
statistical basis for constructing joint intention representations. This makes it easier for agents to understand
each other's behavioral patterns and local goals. With training on larger datasets, multi agent policy
consistency improves significantly. This reduces redundant actions and coordination deviations and
demonstrates the scalability of the cognitive planning structure in data rich scenarios.

The improvement in Explanation Fidelity shows that the interpretability module produces more reliable and
consistent causal explanations with larger datasets. When the sample size is small, agent behaviors are more
scattered, making it difficult for the explanation model to identify key influencing factors. As the dataset
grows, agents form more stable cognitive pathways during decision making. This makes the explanations
more aligned with the true logic of strategy generation. The results indicate that with sufficient data, the
cognitive—behavior chain becomes clearer, enhancing system transparency and providing stronger support for
trustworthy cooperation in real world deployment.

In addition, the impact of varying degrees of task distribution shift between the training and testing scenarios
is investigated, and the resulting changes in all evaluation metrics are comprehensively illustrated in Figure 5.

Episode Win Rate vs Task Shift Normalized Return vs Task Shift
0y & O\ 08"
| |
0.0
| == |
J ‘.‘.
\ /“ \ i
0.6 0.5, /
N P M S
08 08
Coordination Efficiency vs Task Shift Explanation Fidelity vs Task Shift
el s
o4’ ™ 04’ X
[ 1 / 'w
! P ‘ 05
N /
0.6, 0.5,
. A \\ i
08 o8

Figure 5. The impact of changes in task distribution bias on experimental results.

As the degree of task distribution shift grows, the multi-agent system becomes less effective, exhibiting a
systematic decrease across the full set of evaluation indicators. This reflects the difficulty of achieving strong
generalization in cognitive planning frameworks under distributional changes. Episode Win Rate decreases
markedly with larger shifts. This indicates that when agents face task structures that differ significantly from
those in training, their shared cognitive space cannot fully adapt to the new state—action relationships. As a
result, overall strategy execution becomes less stable. This highlights the importance of distributional
consistency in complex task settings. When task structures change systematically, intention alignment and
policy coordination among agents are more easily disrupted.

The decline in Normalized Return further shows that distribution shift weakens the model's ability to produce
stable long term value estimates. When task features, event patterns, or environmental dynamics shift, the
cognitive structures formed during training fail to capture the new causal chains. This leads to deviations in
planning pathways. Because the cognitive planning framework relies on understanding long term strategies



and goals, changes in distribution make this understanding incomplete or inaccurate. This is reflected in the
continuous decrease in return values. The results underscore the need for stronger distributional robustness in
cross task or cross domain applications.

The trend in Coordination Efficiency indicates that distribution shift affects not only individual decision
quality but also the cooperative structure among agents. With increasing shift intensity, shared
representations become less consistent across agents. This leads to more uncoordinated behavior in joint
decisions, including action conflicts, resource waste, and strategy divergence. These findings show that the
cognitive layer plays a central role in cooperative decision making. Distribution shift directly weakens the
shared understanding of task structure among agents and makes it difficult to maintain high coordination
efficiency.

The decline in Explanation Fidelity reveals the sensitivity of the interpretability module to distribution
stability. As task shift increases, the causal factors behind agent decisions become more complex and less
stable. This makes it difficult for the explanation model to produce causal chains that match the actual
strategies. Larger shifts widen the mismatch between explanations and behaviors. This suggests that
cognitive structures drift under distributional changes, causing the explanation logic to no longer reflect the
true decision mechanism. The results highlight the need to improve the robustness of interpretability in
dynamic and cross task scenarios, ensuring that the system remains transparent and controllable even when
distributions change.

5. Conclusion

This study addresses the problem of multi agent cooperation under complex task conditions and proposes a
cognitive planning framework that integrates cognitive modeling, intention reasoning, and interpretability
mechanisms. By constructing structured cognitive representations and a joint intention space, the model
achieves stable cooperation in dynamic and partially observable environments. It also demonstrates higher
strategy consistency and execution reliability across multiple key metrics. The results show that a tight
coupling between the cognitive layer and the planning layer significantly enhances decision making in
complex task structures. The system is not only able to complete tasks but also able to present clear reasoning
behind its behaviors. This greatly improves transparency and trustworthiness.

In terms of performance, the model shows strong robustness across different data scales, data qualities, and
disturbance conditions. This reflects its adaptability to variations in task structures and environmental
dynamics. As data size increases or cognitive structures are optimized, win rate, long term return, and
cooperation quality all show stable improvements. This indicates that the framework fully leverages
environmental experience to build more generalizable cognitive representations. In addition, the
interpretability analysis shows that the model can clearly identify key state factors and causal contributions in
the decision chain. This meets the strict transparency requirements of high risk scenarios and provides an
essential foundation for large scale deployment of multi agent systems.

The study also reveals how task distribution shift, environmental disturbances, and data instability influence
cooperative behaviors. These findings provide theoretical insights for designing more robust multi agent
systems in non stationary environments, multi task transfer settings, and cross domain decision scenarios.
The results show that as distribution shift intensifies, cognitive consistency, coordination efficiency, and
explanation fidelity are all affected. This demonstrates that robustness remains a critical challenge for multi
agent systems. The findings highlight the limitations of current approaches in highly complex environments
and lay the groundwork for cooperation mechanisms that are more resilient and more capable of handling
distributional drift.

Future work can extend toward multi task generalization, adaptive cooperation, and cross modal cognitive
integration. This may include more flexible causal reasoning structures, stronger modeling of environmental
dynamics, and more stable cognitive alignment across agents. Such advances would further enhance



generalization and decision robustness in complex scenarios. In addition, the interpretability module can be
more closely aligned with practical requirements, allowing decision paths to support safety auditing, system
monitoring, and human machine cooperation. Overall, the proposed framework advances the theoretical
development of explainable multi agent intelligence and provides practical pathways for intelligent
cooperation in domains such as urban transportation, emergency coordination, energy management, and
autonomous systems.
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