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Abstract: This paper addresses the challenges of complex dependencies, diverse anomaly patterns, and
the coexistence of label scarcity and pseudo-label noise in cloud service environments by proposing an
anomaly monitoring method that integrates uncertainty estimation with causal inference. The method
models cloud service interactions as dependency graphs, extracts cross-temporal and cross-service
contextual features through graph embedding, and applies uncertainty estimation to provide confidence
intervals for boundary samples, thereby mitigating prediction instability caused by short-term fluctuations
and noise. On this basis, a causal inference mechanism is introduced to suppress spurious correlations, while
causal consistency constraints enhance the identification of complex anomalies under cross-tenant coupling
and multi-tenant interference. The optimization objective jointly incorporates classification loss, contrastive
loss, and uncertainty calibration to balance threshold performance and global ranking stability. Experiments
systematically analyze hyperparameter sensitivity, environmental sensitivity, and data sensitivity, including
the effects of prediction head depth and width on boundary confidence, the trade-off between false positives
and false negatives under varying interference and coupling, and the impact of label scarcity and pseudo-
label noise on causal accuracy. Results show that the proposed method outperforms existing public models
on metrics such as AUC, F1-Score, Precision, Recall, and AUROC, and maintains robustness and stability
under complex interference and high-noise conditions, fully validating its effectiveness and applicability in
cloud service anomaly monitoring tasks.
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1. Introduction
In the rapid development of cloud computing environments, service architectures are becoming increasingly
complex. Business requests span multiple service modules and resource units, forming dynamically
coordinated and highly coupled dependency networks. This complexity brings flexibility and scalability but
also introduces potential risks of anomalies. When network jitter, resource bottlenecks, or external load
shocks occur, they often spread rapidly through chain reactions, turning local anomalies into global failures.
Such events pose serious threats to system stability and service continuity. Therefore, achieving efficient
and accurate anomaly monitoring in complex service dependency environments has become a core
challenge in ensuring the reliability of cloud computing systems. Traditional statistical methods or
threshold-based detection mechanisms often fail in these scenarios, as they cannot adapt to multi-source,
high-dimensional, and dynamically changing feature distributions[1].



At the same time, anomalies in cloud service environments are not caused by a single factor but by the
interplay of multiple elements. Load imbalance, resource contention, abnormal invocation paths, and
external disturbances can all lead to high uncertainty in time-series metrics. Sole reliance on deterministic
modeling often fails to capture confidence boundaries, making anomaly judgments prone to distortion in
borderline cases. Introducing uncertainty estimation helps quantify the credibility of model predictions and
provides confidence intervals for anomaly detection. This reduces misjudgments caused by noise or
occasional fluctuations. Especially in cross-tenant and cross-service environments, explicitly indicating
prediction uncertainty allows operators to make robust decisions under multi-task and multi-scenario
interference, enhancing system robustness and interpretability[2].

However, uncertainty estimation alone is insufficient to fully reveal the roots of complex anomalies. Cloud
service dependencies exhibit causal structures. Anomalies often do not occur in isolation but propagate
downstream from upstream deviations. The introduction of causal inference provides effective tools to
understand the generative mechanisms of anomalies. By constructing causal graph models, it becomes
possible to distinguish superficial correlations from true causal relationships. This enables more precise
identification of the sources and propagation paths of anomalies[3]. Compared with simple correlation
analysis, causal inference avoids the misleading effects of spurious dependencies. Even when faced with
intertwined multidimensional metrics and potential confounding factors, the detection system can maintain
accurate diagnostic capabilities. This plays a key role in reducing false positives and false negatives in large-
scale systems[4].

From the perspective of academic research, integrating uncertainty estimation with causal inference enables
the construction of a comprehensive anomaly detection framework that combines confidence quantification
with causal interpretation. On one hand, uncertainty estimation provides stability under complex inputs,
ensuring that anomaly detection not only outputs results but also indicates their confidence intervals. On the
other hand, causal inference assigns interpretable causal mechanisms to the results, allowing detection to go
beyond surface-level findings and trace anomalies back to their generative logic. The combination of the
two is expected to break through the limitations of existing methods and provide stronger theoretical
foundations and methodological pathways for anomaly monitoring in cloud services. This represents not
only a technological innovation but also a significant extension of intelligent operations in complex
systems[5].

From the perspective of application value, anomaly monitoring methods that integrate uncertainty
estimation and causal inference carry far-reaching implications for enhancing observability and
controllability in cloud computing environments. They can detect potential risks early, reduce the
probability of large-scale outages, and help operations teams locate problem sources more efficiently. This
shortens troubleshooting time and lowers maintenance costs. In future intelligent and automated operation
systems, such methods are expected to become a cornerstone for supporting high service availability and
continuous business growth. Furthermore, this research direction has strategic significance in safeguarding
the stability of critical infrastructure, improving the rationality of resource scheduling, and promoting the
sustainable development of the cloud computing ecosystem[6].

2. Related work
In the study of anomaly detection in cloud services, traditional methods often rely on statistical modeling
and threshold setting. They attempt to identify potential risks by monitoring fluctuations in key performance
indicators. These methods are simple to implement and suitable for early scenarios of single service or
resource monitoring. However, they show clear limitations in complex environments with multiple tenants,
multiple tasks, and dynamic loads. Fixed thresholds cannot adapt to the highly dynamic nature of cloud
environments, leading to many false alarms and missed detections. Statistical modeling also struggles to



capture the diversity of anomaly patterns, making it difficult to handle complex anomalies under cross-
dimensional dependencies. These limitations have driven both academia and industry to shift toward
machine learning and deep learning methods, which can improve flexibility and adaptability through data-
driven feature modeling[7].

With the introduction of machine learning, both supervised and unsupervised approaches have been widely
applied to anomaly detection in cloud services. Supervised methods train classifiers using large amounts of
labeled data and can achieve high detection accuracy in specific scenarios. However, in real cloud
environments, the high cost of labeling and the scarcity of anomaly samples limit their generalization
performance. In contrast, unsupervised methods use clustering, reconstruction errors, or latent space
modeling to automatically discover anomaly patterns. They are better suited for high-dimensional and low-
label environments. These methods improve automation to some extent, but still face challenges such as
unstable feature selection and a lack of interpretability of detection results. Under complex dependencies,
purely data-driven methods often fail to distinguish correlation from causality, which makes root cause
analysis insufficient.

In recent years, the development of deep learning has provided new ideas for anomaly detection. Through
temporal modeling, attention mechanisms, and graph neural networks, researchers have tried to capture
cross-service dependencies and multi-dimensional interaction features, improving the representation of
anomaly patterns[8]. Deep temporal models can learn multi-granularity time dependencies and adapt to
short-term fluctuations and long-term trends in cloud environments. Graph-based modeling can leverage
topological information between services and extend anomaly detection to the level of global dependency
networks. These methods overcome the limitations of traditional approaches in high-dimensional and
dynamic environments. However, they also bring challenges such as high computational complexity, large
training costs, and insufficient explanation of anomaly causes. In practice, deep learning models provide
higher detection accuracy, but their black-box nature limits usability for operators in anomaly tracing and
decision-making.

Against this background, more research has started to explore the integration of uncertainty estimation and
causal inference to address the shortcomings in confidence quantification and causal interpretation.
Uncertainty estimation provides confidence boundaries for model predictions, enabling detection systems to
output judgments with credibility in complex scenarios. This improves robustness and reliability in anomaly
discovery. Causal inference offers theoretical support for understanding anomaly propagation paths under
complex dependencies. It helps distinguish true causal relationships from surface correlations. The
combination of the two not only enhances detection performance but also enables interpretable anomaly
localization, offering more practical value for intelligent operations. Therefore, how to efficiently integrate
these two methods in cloud service environments to build an anomaly monitoring framework with
robustness and interpretability has become both a key research trend and a critical direction for future
development[9].

3. Method
This study introduces a cloud service anomaly monitoring method that integrates uncertainty estimation
with causal inference. The core idea is to jointly model prediction confidence and causal structures in
complex service dependencies to achieve robust anomaly detection and interpretable anomaly localization.
The method first represents cloud service interactions as multidimensional time-series features and applies
probabilistic modeling to quantify uncertainty, allowing the detection phase to output both results and their
confidence intervals. It then incorporates a causal inference mechanism, using causal graphs to represent and
reason about service dependencies, distinguishing superficial correlations from underlying causalities to
improve interpretability and localization accuracy. The overall framework is optimized jointly so that



uncertainty estimation and causal structure learning complement each other, enabling anomaly monitoring
that is both more robust and more interpretable in dynamic and complex environments. The model
architecture is shown in Figure 1.

Figure 1. Uncertainty-Causal Anomaly Monitoring Framework

In the uncertainty modeling part, the method first represents the temporal input features of the service as a
vector sequence, which is recorded as:

Where d represents the feature dimension. To introduce confidence modeling into the prediction results,
this study uses a probability distribution to characterize the potential output. Assuming that the model

prediction result is ty , the conditional probability distribution is defined as:

Where  is the model parameter and tz is the latent variable. Through this distributed modeling approach,
the expected value and variance can be output in the prediction stage, thereby achieving uncertainty
estimation. The predicted mean and variance are expressed as:

t represents the prediction result, and
2
t measures the confidence interval of the result. A large variance

indicates high uncertainty in the prediction, prompting the model to be cautious about the anomaly detection
results at that moment.

In the causal inference modeling part, the method abstracts service dependencies into a directed graph
structure  EVG , , where the node set V represents services and the edge set E represents

dependency relationships. For any two services iv and Vv j  , if there is a dependency relationship, the
conditional probability is defined as:



This formula embodies the difference between causal inference and correlation analysis. By comparing the
intervention distribution with the conditional distribution, we can identify true causal dependencies and
effectively eliminate the interference of spurious correlation features on anomaly detection.

To combine uncertainty modeling and causal inference, this study further defines an anomaly scoring
function, which is in the form of:

 and  are weight coefficients. The first term reflects the confidence deviation between the prediction

and the observation, and the second term measures the propagation offset ij under the dependency
relationship through causal inference results. A larger anomaly score indicates a higher anomaly risk at that
moment or node.

Through the above modeling process, the proposed method achieves dual advantages in dynamic cloud
service environments. On the one hand, uncertainty estimation enhances the robustness and credibility of
detection results. On the other hand, causal inference enables tracing and explaining the causes of anomalies.
This integrated mechanism not only improves detection accuracy but also provides clear diagnostic evidence
for operators, thereby effectively supporting the stable operation of large-scale cloud computing systems.

4. Experimental Results
4.1 Dataset
This study selects the Cloud Resource Usage Dataset for Anomaly Detection as the fundamental dataset for
method validation. The dataset records time-series observations of multidimensional resource usage metrics
in a multi-tenant cloud environment, including CPU, memory, and disk I/O. It covers typical scenarios of
resource overload or abnormal usage. Each record consists of a vector of resource metrics, with several
embedded anomaly points to simulate the behavioral characteristics of cloud resources under abnormal
conditions.

The dataset exhibits strong temporal and multidimensional properties, which align with the typical
requirements of cloud service monitoring. Its multidimensional resource metrics can reflect cross-service
and cross-instance resource contention, jitter, or bottleneck effects, with the potential to simulate anomaly
propagation in complex service dependency environments. Using this dataset allows examination of the
model's ability to detect anomalies in heterogeneous metric spaces, as well as its performance in uncertainty
estimation and causal inference within high-dimensional dependency structures.

Validation on this dataset demonstrates the applicability and robustness of the proposed method in cloud
service environments. With its broad coverage of resource metrics and well-designed anomaly points, the
dataset provides realistic testing scenarios for the uncertainty-causality integrated model. This strengthens
the adaptability and generalization ability of the method to complex anomaly patterns in cloud computing
systems.



4.2 Experimental Results
To systematically validate the effectiveness of the proposed cloud service anomaly monitoring method that
integrates uncertainty estimation and causal inference, this study conducts comparative experiments based
on representative publicly available models. The selected models include MTAD-GAT, which applies graph
attention to multivariate time-series anomaly detection, LGAT, which combines graph structures with long-
sequence modeling, DGINet, which captures dynamic graph interactions, and MADGA, which incorporates
dependency alignment strategies. These models represent mainstream research directions in recent years,
covering both the capture of complex temporal dependencies and the modeling of multi-dimensional
interaction patterns. By comparing with these models, the advantages of the proposed method in capturing
high-dimensional service dependencies, quantifying uncertainty, and performing causal inference can be
more clearly demonstrated. The specific results are shown in Table 1.

Table1: Comparative results on alignment robustness benchmarks

Model AUC F1-Score Precision Recall

MTAD-GAT[10] 0.871 0.754 0.702 0.817

LGAT[11] 0.889 0.768 0.735 0.803

DGINet[12] 0.901 0.781 0.748 0.820

MADGA[13] 0.905 0.790 0.755 0.828

Ours 0.924 0.812 0.779 0.848

From the perspective of overall separability, the proposed method achieves an AUC of 0.924, which is
higher than MADGA (0.905), DGINet (0.901), LGAT (0.889), and MTAD-GAT (0.871). This indicates the
strongest discrimination between normal and anomalous instances across the full threshold range. This
improvement can be attributed to the joint introduction of uncertainty estimation and causal structure
constraints in the detection framework. The former explicitly models predictive variance and confidence
boundaries to reduce ranking instability caused by short-term fluctuations. The latter distinguishes causal
paths from mere correlations, mitigating spurious associations in cross-service topologies and pushing the
ROC curve upward.

In terms of threshold-level performance, F1-Score increases step by step with model capability: MTAD-
GAT achieves 0.754, LGAT 0.768, DGINet 0.781, and MADGA 0.790, while the proposed method further
improves it to 0.812. This gain reflects the method's ability to simultaneously enhance both precision and
recall at boundary samples. Compared with baselines that focus on correlation modeling, confidence-
weighted residuals suppress false positives triggered by weak evidence, enabling a better trade-off for F1
under the same threshold setting.

From the balance between precision and recall, the proposed method achieves a precision of 0.779 and a
recall of 0.848, outperforming MADGA (0.755 and 0.828) and DGINet (0.748 and 0.820) with simultaneous
improvements in "high recall and stable precision." This suggests that causal inference effectively filters out
noise from non-causal edges in complex dependency networks, allowing recall to improve without
significant sacrifice in precision. At the same time, uncertainty calibration tightens decision boundaries
when anomaly confidence is low, preventing a sharp drop in precision caused by excessive sensitivity and
stabilizing the trade-off between false positives and false negatives.



A longitudinal comparison of the baselines shows a gradual improvement in AUC and F1 from MTAD-
GAT and LGAT, which focus on graph attention and structural learning, to DGINet and MADGA, which
incorporate dynamic graphs and alignment mechanisms. However, these methods still fall short of the
proposed one. The gap indicates that relying solely on graph structures or sequential representations is
insufficient to maintain robustness under multi-tenant interference and cross-tenant coupling. When
uncertainty estimation is incorporated into the scoring function and causal consistency constraints are used
to guide propagation paths, the model becomes more reliable in distinguishing boundary samples and weak
anomalies. This is reflected in the continuous rise of AUC and the joint improvement of precision and recall.

This paper also conducts comparative experiments on the hyperparameter sensitivity of prediction head
depth and width to the confidence interval of boundary samples. The experimental results are shown in
Figure 2.

Figure 2. Hyperparameter sensitivity experiment of prediction head depth and width to boundary sample
confidence interval

From the overall trend, as the prediction head increases from D2×W64 to D4×W128, AUC steadily
improves from 0.902 to 0.924, and F1-Score rises from 0.786 to 0.812. This indicates that moderate depth
and width significantly enhance the representation capacity for cross-service dependencies and temporal
context. Combined with uncertainty estimation, variance constraints on boundary samples benefit both ROC
space discrimination and threshold-level performance. The gains at this stage show that representation
redundancy brought by increased capacity and uncertainty calibration complement each other. They
improve global separability across all thresholds and stabilize prediction confidence at boundary points.

The precision curve reaches 0.779 at D4×W128 and then slightly decreases to 0.772 at D6×W192, while
recall continuously increases from 0.828 to 0.851, showing a pattern of "stable precision and improved
recall." This means that as model capacity continues to grow, the ability to capture weak signals and sparse
anomalies further improves. However, the capture of correlation features also becomes more sensitive,
making it easier to collect local non-causal noise, which slightly suppresses precision. At this stage,
uncertainty gating plays a suppressive role, preventing a significant drop in precision, but it cannot fully
offset the noise absorption effect caused by excessive depth or width.

F1-Score peaks at 0.812 with D4×W128 and then slightly declines to 0.807, reflecting a balance point
between capacity, calibration, and causality. Before D4 × W128, the synergy between representation
capability and confidence interval modeling raises both precision and recall. Beyond this point, although
recall continues to improve, the marginal gain of precision turns negative, leading to a slight decrease in the
overall trade-off. For cloud service anomaly monitoring, this suggests that engineering deployments should
prioritize head configurations near the peak to achieve a more robust Pareto point in the trade-off between
false positives and false negatives.



AUC slightly drops from 0.924 to 0.921 at D6×W192, consistent with the decline in precision. This
indicates that excessive capacity may cause the decision boundary to widen and slightly dilute the global
ranking. The causal inference branch can suppress part of the spurious correlation diffusion, ensuring that
the continuous increase in recall does not come at the cost of a significant loss in precision. However, when
representational freedom becomes too high, weak resonance from non-causal paths may still be amplified.
Taken together, these results show that moderate capacity and the synergy between uncertainty and causality
are key to improving robustness in complex cloud environments, while over-parameterization leads to minor
regressions in both ranking and threshold performance.

This paper also analyzes the sensitivity of uncertainty calibration data under the condition of missing
indicator channels and random noise injection. The experimental results are shown in Figure 3.

Figure 3. Uncertainty calibration data sensitivity experiment under missing indicator channels and random
noise injection

As the proportion of missing channels and noise level increases from 0.00 to 0.50, the AUC decreases
smoothly from 0.924 to 0.898, indicating that separability across the full threshold space weakens as
information is lost. In multi-metric monitoring of cloud services, missing key channels reduce the
discriminative power of cross-service dependencies, causing the margin between normal and abnormal
states in the representation space to shrink. Even though uncertainty estimation provides confidence
intervals for boundary samples, the overall ranking advantage is still diluted by the continuous information
gap and amplified noise effects.

The F1-Score shows a "decrease– slight recovery– decrease" pattern (0.812→ 0.792→0.798→ 0.790),
reflecting that threshold trade-offs are more sensitive to noise. Under moderate perturbations, confidence
weighting can partially correct boundary instability caused by noise, temporarily easing the tension between
Precision and Recall. However, when the missing ratio continues to increase, the accumulated uncertainty in
the residual surpasses the buffering capacity of the gating mechanism, leading to more misclassifications
near the threshold and causing the F1 score to decline again.

Precision exhibits a slight U-shape before trending downward (0.779→0.770→0.773→0.767), while Recall
first increases and then decreases slightly (0.848→0.861→0.852). Their divergence reveals the distinct
functional pathways of causal inference and uncertainty calibration in noisy environments. Under moderate
perturbations, the causal branch filters out non-causal correlations and improves coverage of weak
anomalies, which raises recall. However, as missing data and noise continue to grow, non-causal edges
increasingly enter the candidate set, making it difficult for precision to improve correspondingly. In this case,
uncertainty gating mainly acts as a "brake" to suppress false positives, but it cannot reverse the overall
downward trend.



From a data sensitivity perspective, these results reveal the collaborative boundary of "observation
sufficiency, uncertainty calibration, and causal constraint." Continuous loss of observation channels
primarily degrades global ranking performance (AUC). In the moderate perturbation region, causal
consistency and confidence gating can still maintain relatively stable threshold-level performance. Once the
system enters a high-perturbation regime, the confidence intervals for boundary samples expand further, and
incorrect evidence from non-causal noise increases, exerting more significant pressure on Precision and F1.
For cloud service anomaly detection, this suggests that channel reconstruction or robust feature selection
should be combined to enhance structural discriminability and calibration stability under channel loss and
noise injection.

This paper also evaluates the sensitivity of the false alarm and false negative trade-off environment under
multi-tenant interference intensity and cross-tenant coupling degree. The experimental results are shown in
Figure 4.

Figure 4. Environmental sensitivity experiment on the trade-off between false positives and false negatives
under multi-tenant interference intensity and cross-tenant coupling degree

As multi-tenant interference gradually increases, Precision first drops slightly, then recovers, and finally
declines again. This indicates that in the moderate interference region, uncertainty gating and evidence
fusion can suppress some spurious correlations and temporarily improve the robustness of boundary
decisions. However, as interference continues to intensify, non-causal noise introduced by cross-tenant
interactions is more easily absorbed at the representation level, increasing the difficulty of controlling false
positives and causing Precision to decline. This trajectory suggests that correlation modeling alone is
insufficient to maintain stable alert quality. Confidence information must be treated as a primary component
in the scoring function to avoid overreactions under amplified noise conditions.

Unlike the slight U-shape of Precision, Recall exhibits a unimodal "rise-then-fall" pattern (0.848→0.860→
0.850). This shows that under moderate interference, the causal branch filters out non-causal paths and
focuses on interpretable propagation chains, making it easier to capture weak signal anomalies and
improving recall. When interference intensifies further, resonance between true causal chains and noise
dilutes effective evidence, making it difficult to sustain recall gains. For cloud service operations, this
suggests that in high-concurrency multi-tenant scenarios, the confidence threshold and the strength of causal
regularization should be dynamically adjusted to maintain coverage without sacrificing too much precision.

The impact of cross-tenant coupling on global separability is reflected in a smooth decrease in AUC as
coupling increases (0.924 → 0.898). As coupling deepens, synchronous fluctuations and topological
resonance between services become more frequent, reducing the distance between normal and abnormal
states in the representation space and shifting the ROC curve downward. Even with built-in uncertainty
decomposition and causal constraints, if correlation-driven common-mode factors dominate, the ranking
advantage is gradually eroded. Therefore, in highly coupled environments, structural decoupling methods



such as graph sparsification and intervention-based representation learning, combined with channel-level
robustness enhancement, are necessary to maintain separability across the full threshold space.

F1-Score shows a monotonic decrease as coupling increases (0.812→0.782), indicating that threshold trade-
offs become harder to manage in strongly dependent networks. Coupling amplifies the uncertainty region
around boundary samples, leading to more frequent trade-offs between false positives and false negatives,
and reducing overall performance at a unified threshold. Incorporating uncertainty estimation into residual
weighting helps stabilize F1 under low to moderate coupling, but as dependency strength continues to rise,
the marginal benefits of causal consistency constraints diminish, and F1 inevitably declines. This
observation aligns with real-world cloud service environments. As cross-team and cross-tenant call
relationships become increasingly tight, parameter tuning alone is insufficient to maintain threshold
performance and must be complemented by topological governance and online calibration.

Next, this study conducted experiments on the data sensitivity of label scarcity and pseudo-label noise ratio
to causal inference accuracy. The experimental results are shown in Figure 5.

Figure 5. Data Sensitivity Experiment on Label Scarcity and Pseudo-label Noise Ratio to Causal Inference
Accuracy

As label scarcity intensifies and the proportion of noisy pseudo-labels increases, the AUC decreases steadily
from 0.924 to 0.895, indicating that the overall discriminative power of causal inference is significantly
affected. Under conditions of sufficient labels and low noise, the model can maintain high-confidence
anomaly detection through causal structure constraints and uncertainty quantification. However, as pseudo-
label errors accumulate and supervisory signals become diluted, the identifiability of causal paths in the
inference space decreases. This leads to a gradual reduction in the separability between normal and
abnormal instances across the full threshold space, highlighting the importance of high-quality annotations
for maintaining global discriminability.

The F1-Score follows a "decrease– slight recovery–decrease" pattern (0.812→0.796→0.802→0.798),
indicating that under moderate noise, pseudo-labels, despite introducing errors, increase the diversity and
coverage of the distribution, which temporarily improves threshold performance. However, when noise
continues to rise, the spread of erroneous signals along non-causal paths causes boundary decisions to
become inaccurate, leading to another drop in F1. This shows that there is a "tolerable noise region" in
pseudo-label learning. Beyond this threshold, the advantage of causal modeling is gradually eroded by noise
interference.

Precision declines initially, then recovers slightly before dropping again (0.779→0.770→0.773→0.769),
while Recall first increases and then decreases (0.848→0.857→0.850). This divergence reflects the dual
impact of pseudo-label quality on the model. At early noise levels, recall improves because pseudo-labels
expand coverage of weak signals. However, as the proportion of incorrect labels grows, the model begins to



treat irrelevant signals as part of causal paths, increasing false positives and reducing precision. Although
uncertainty gating suppresses error propagation to some extent, it cannot fully offset the structural bias
caused by degraded annotation quality.

Overall, the impact of label scarcity and pseudo-label noise on causal inference performance is reflected not
only in the decline of global ranking performance (AUC) but also in the trade-offs between false positives
and false negatives at the threshold level. A moderate amount of pseudo-labels can compensate for
insufficient supervision and improve recall. However, excessive noise disrupts the semantic consistency of
causal paths, leading to systematic degradation in accuracy and stability. This experiment suggests that in
practical cloud service anomaly detection tasks, pseudo-label generation and filtering strategies should be
designed in coordination with uncertainty estimation and causal regularization to maintain inference
reliability and generalization under weak supervision conditions.

5. Conclusion
This study addresses the problem of anomaly monitoring in cloud service environments and proposes a
modeling method that integrates uncertainty estimation with causal inference. It systematically tackles the
challenges posed by multi-tenant interference, cross-tenant coupling, and pseudo-label noise to detection
accuracy and stability. By introducing confidence intervals at the representation level and applying causal
constraints at the structural level, the proposed method demonstrates significant advantages in boundary
sample recognition, global ranking stability, and the balance between false positives and false negatives.
The significance of this work lies not only in improving model robustness under dynamic and complex
conditions but also in advancing anomaly detection from simple correlation modeling to a combination of
causality-driven reasoning and uncertainty calibration. This provides a solid technical foundation for the
secure and reliable operation of cloud service systems.

From a methodological perspective, this study emphasizes the importance of multidimensional modeling in
scenarios with data sensitivity and environmental sensitivity. The experiments on label scarcity and pseudo-
label noise reveal the damaging effect of spurious evidence on causal edge recognition while highlighting
the value of uncertainty mechanisms in mitigating this risk. The interference and coupling experiments show
the model's performance differences under complex multi-tenant interactions and further demonstrate the
complementary roles of causal inference and uncertainty estimation in cross-level feature modeling. This
exploration not only addresses practical challenges in cloud service environments but also provides new
perspectives for anomaly detection and resource scheduling in broader distributed systems.

At the application level, the findings of this study have strong generalizability and transferability. The
framework can be seamlessly integrated into existing cloud monitoring systems to provide more accurate
technical support for service quality assurance, resource scheduling, and potential attack detection. More
importantly, the method enables high-quality anomaly identification without relying on large amounts of
clean labeled data, thereby reducing the maintenance and operational costs of large-scale cloud platforms.
This low-dependence and high-robustness design can accelerate the deployment of automated monitoring
solutions across industries, generating tangible benefits in service continuity and user experience.

Future research directions are worth further exploration. One important direction is to embed uncertainty
estimation and causal inference mechanisms more deeply into cross-modal data fusion and real-time stream
processing to enhance adaptability in complex environments. Another direction is to examine the method's
scalability and adaptability in real-world large-scale cloud platforms, especially in cross-regional and multi-
cloud collaborative scenarios. Furthermore, as cloud services increasingly integrate with edge computing
and the Internet of Things, anomaly patterns will become more diverse and dynamic. The ideas of this study
can provide theoretical and practical references for these emerging applications. Continued exploration of



the integration between uncertainty estimation and causal inference is expected to drive intelligent operation
systems toward greater autonomy, reliability, and efficiency.
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