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Abstract: This paper addresses the problems of insufficient structural preservation and semantic drift in
cross-domain image generation by proposing a cross-domain generation method based on graph-structured
modeling. The method constructs node and edge representations of feature maps to explicitly model the
semantic regions and structural relationships within images, enabling coordinated optimization of content
consistency and style alignment during cross-domain feature transfer. Specifically, the model first uses a
shared encoder to extract multi-scale semantic features from both the source and target domains, then builds
topological relationships among nodes through a graph construction module. A graph convolution
mechanism is applied to propagate and aggregate structured features, allowing the model to learn high-order
semantic associations across domains. Finally, a decoder reconstructs the target-domain image. To enhance
stability and realism, a joint optimization objective combining adversarial loss, content consistency
constraint, and structural preservation term is designed to balance visual quality and structural coherence.
Experimental results show that the proposed method outperforms mainstream generative models in MSE,
MAE, PSNR, and SSIM, achieving high fidelity and semantic consistency under various cross-domain
conditions. This study reveals the intrinsic patterns of cross-domain image generation from a structural
modeling perspective and provides an effective new approach for graph-based generative visual modeling.
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1. Introduction

In today's field of artificial intelligence and computer vision, cross-domain image generation has become a
major research focus. With the rapid development of deep learning models, image generation technologies
have shown great potential in areas such as style transfer, data augmentation, medical image synthesis, and
virtual reality[1]. However, in cross-domain scenarios, there are often significant distribution gaps between
the source and target domains, including inconsistencies in content structure, lighting conditions, texture
features, and semantic layouts. These discrepancies make it difficult for models to achieve high-quality
transfer generation. Traditional generation frameworks based on convolution or adversarial learning often
rely on large amounts of paired data or strict domain-matching assumptions, making it hard to capture global
relationships and structural constraints between domains. As a result, the generated images may lack
semantic consistency and visual realism. Therefore, how to balance content fidelity and style migration under
cross-domain conditions has become a key scientific challenge that urgently needs to be addressed[2].

Against this background, graph-based modeling offers a new perspective for cross-domain image generation.
Graph structures can represent high-level associations within and across domains through nodes and edges,
thus overcoming the limitations of Euclidean space and enabling explicit modeling of complex relationships.



Compared with generation models that rely only on local convolutional features, graph-based modeling can
integrate connections between semantic units at the global level, capturing topological relationships and
contextual dependencies among objects. For example, by treating image patches, semantic regions, or feature
points as nodes, and using edge weights to represent semantic or spatial similarity, a cross-domain feature
alignment mechanism can be established. This mechanism maintains semantic consistency and structural
integrity during generation. Such an approach strengthens the structural representation ability of the model
and provides structural priors to address style distribution discrepancies between domains|3].

Moreover, cross-domain image generation has great practical significance. In scenarios where data annotation
is costly or privacy-sensitive, it enables data transfer and expansion from the source domain to the target
domain, effectively alleviating data scarcity. In applications such as medical image analysis, remote sensing
reconstruction, and autonomous driving perception, variations in devices, weather, or lighting often cause
significant domain shifts. Cross-domain generation can achieve domain adaptation through structural
alignment, improving model generalization across diverse environments. In digital content creation and
virtual simulation, it allows style fusion between real and virtual environments, supporting multi-modal
visual generation. Thus, graph-based cross-domain image generation not only holds academic value but also
promotes practical development in intelligent visual systems[4].

From a theoretical standpoint, introducing graph structures transforms cross-domain generation from
traditional pixel-space mapping into relational modeling in graph space. Graph neural networks and other
structured models can achieve cross-domain information flow through node representation propagation and
aggregation, allowing the model to learn shared structural representations without relying on strictly aligned
samples. This approach mitigates the impact of data distribution shifts, enabling the model to learn more
robust cross-domain mapping patterns through topological relationships. Additionally, combining graph
modeling with attention mechanisms allows adaptive weighting among nodes to strengthen key region
generation, enhancing semantic consistency and structural interpretability. Through structured feature
representations, the model can maintain content coherence and morphological stability when facing complex
domain variations, thus providing a solid theoretical foundation for cross-domain generation[5].

In summary, graph-based cross-domain image generation represents an important extension of deep
generative models and a key direction for achieving visual intelligence across domains. It integrates concepts
from structural modeling, representation learning, and generative mechanisms, aiming to reveal the essential
patterns of cross-domain feature transformation from a graph-structural perspective. This research promotes a
paradigm shift from data-matching to structure-understanding in cross-domain generation, enhancing model
interpretability, stability, and generalization in complex visual scenarios. With the continued development of
graph neural networks and generative adversarial frameworks, this direction is expected to play a central role
in multi-modal generation, domain adaptation, and intelligent image reconstruction, paving the way for more
cognitively capable generative visual systems.

2. Related work

In recent years, cross-domain image generation has gradually shifted from pixel-level mapping toward
structure-aware modeling. To alleviate issues such as semantic drift and structural distortion, enforcing
structural consistency has become an important direction for improving generation quality. For example, [6]
introduces a structure-consistency mechanism that effectively reduces semantic distortion in unsupervised
image-to-image translation. Similarly, [7] proposes a graph-structured generation framework, Graph2Pix,
which represents image semantics using nodes and edges and achieves cross-domain generation under
explicit structural alignment.

Meanwhile, graph neural networks (GNNs) have demonstrated strong capabilities in modeling structural
information. In related studies, GNNs have been applied to structural generalization modeling for
microservice routing, validating their scalability and generalization ability in complex systems [8]. In



distributed systems, GNN-based approaches have also been used to predict spatiotemporal traffic patterns [9],
further demonstrating the effectiveness of graph structures in modeling dynamic changes and enabling
consistent feature transfer across domains.

In sequence modeling and structure learning, Transformer architectures have also been widely adopted for
structure-aware tasks. For instance, [10] proposes a Transformer-based change-point detection framework to
monitor structural variations in cloud-native systems, while [11] leverages Transformers to model user
interaction sequences, improving the accuracy of dwell-time prediction in user interfaces. These works
indicate that combining sequential modeling with structural modeling in dynamic environments enhances
representation stability and generalization, which aligns well with the structural preservation requirements in
cross-domain image generation.

To improve robustness against data distribution shifts, various self-supervised and attention-driven deep
learning frameworks have been proposed. In [12], a self-supervised mechanism is introduced for anomaly
detection in heterogeneous time series, while [13] employs attention mechanisms to enhance anomaly
identification accuracy in ETL pipelines. In addition, [14] presents a dictionary-based few-shot anomaly
segmentation framework that emphasizes generalization ability and sample efficiency under cross-domain
conditions, which resonates with the goal of using graph structures to enhance cross-domain semantic
consistency.

Furthermore, to achieve unified representations across tasks and domains, [15] introduces a dynamic prompt
fusion mechanism to adapt to varying tasks and domains, and [16] proposes a trust evaluation mechanism in
multi-agent systems, highlighting the importance of structural relationships in maintaining stable
collaborative generation. Although these methods are applied in different contexts, they offer valuable
insights into structure-aware modeling and robust generation.

In information retrieval and recommendation systems, methodological advances also reflect the importance
of structural and consistency modeling. Specifically, [17] proposes a multi-objective contextual ranking
mechanism to improve generation faithfulness, while [18] employs causal modeling to mitigate relevance
bias in advertising recommendation. Similarly, [19] introduces uncertainty estimation to enhance the
reliability of large language model outputs. These approaches provide theoretical support for structural
generalization and risk-aware modeling, which are beneficial for strengthening consistency control in cross-
domain generation.

Although some studies originate from control systems or industrial automation, the robust control strategy
proposed in [20] demonstrates effective approaches for maintaining performance stability in dynamic systems,
offering useful references for handling structural variations in cross-domain scenarios.

3. Method

This paper proposes a cross-domain image generation method based on graph structure modeling. The core
idea is to achieve high-quality mapping between the source and target domains by constructing a cross-
domain feature graph and performing structural constraints and semantic propagation in the graph space.
Specifically, the proposed framework first extracts semantic representations from both domains through a
shared encoder to ensure that features are comparable at multiple levels. These features are then transformed
into graph nodes, while the relationships among them are represented as weighted edges that capture spatial
and semantic dependencies. Within this graph space, the model employs a graph convolution mechanism to
propagate information across nodes, enabling the transfer of structural knowledge and domain-invariant
features. Finally, a decoder reconstructs the target domain image under the guidance of the learned graph
representation, ensuring that the generated content preserves semantic consistency while adapting to the
target domain's structural and visual characteristics. Figure 1 illustrates the overall architecture and data flow
of the proposed method.
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Figure 1. Overall model architecture

First, given a source domain image set X and a target domain image set X, , the model extracts semantic

feature representations F, =E(X,) through a shared encoder E(-) . In the feature space, these

representations are further transformed into a node set ¥ ={v,}Y , where each node represents a local

semantic region or key structural unit. The adjacency matrix A is constructed using the similarity metric
function:

|vi =¥ ”i
o2

AQ. =exp(—

S

It is used to represent the strength of structural associations between nodes. This graph structure not only
preserves the spatial dependencies of images but also provides a basis for subsequent cross-domain feature
propagation.

In the graph representation learning phase, the model uses a graph convolution mechanism to achieve feature

aggregation and semantic propagation between nodes. Specifically, given the node feature matrix H at
layer 1, it is updated to:

1 1
H o(ﬁ’ijﬁ’iH(J)W(n)

Where A=A+1 represents the adjacency matrix with self-connection, D isits degree matrix, W is

the learnable weight parameter, and o(-) is the nonlinear activation function. The core function of this layer



is to achieve feature sharing between nodes across domains through topological constraints, enabling the
model to learn domain-invariant semantic relationships at the structural level.

In the generation phase, the model integrates the structural features into a unified graph embedding
representation Z = Aggregate(H") and inputs it to the decoder G(-) for reconstruction to generate the

target domain image X . =G(Z) . To ensure that the generated result is semantically consistent with the

source domain content and has the appearance characteristics of the target domain, this paper designs a joint
optimization objective function that includes adversarial constraints and structural consistency terms. The
overall loss function is defined as:

L = Ladv + AIL + }"2 Lszmcmre

total ‘content

Among them, L, 1is used to improve the domain adaptability of generated samples, L ensures the

semantic consistency of cross-domain mapping, L strengthens the fidelity of geometric topology

Structure

through graph constraints, and D is the weight coefficient.

Finally, the entire model is jointly optimized within an end-to-end framework. The encoder extracts structural
features shared across domains, the graph convolution module models high-order dependencies between
nodes, and the decoder, guided by this structure, performs target domain generation. By modeling the graph
structure, the model simultaneously preserves content semantics and global geometric structure across
domains, achieving high-fidelity mapping from structural space to visual space. This approach provides a
unified structured representation framework for cross-domain image generation and lays a theoretical
foundation for adaptive learning of multi-domain vision tasks.

4. Experimental Results
4.1 Dataset

This study employs the Cityscapes dataset as the primary data source for the cross-domain image generation
task. The dataset consists of high-resolution urban street-view images that cover diverse scenes across
different cities, seasons, and weather conditions. Each image has a resolution of 2048 x 1024 and includes
multiple semantic categories such as buildings, roads, pedestrians, vehicles, and vegetation. These
characteristics comprehensively reflect the spatial structures and semantic distributions in complex urban
environments. The dataset also provides fine-grained pixel-level annotations, offering a reliable foundation
for learning semantic consistency and structural preservation in the model.

In the experimental design, the Cityscapes dataset is divided into a source domain and a target domain to
evaluate the model's cross-domain transfer capability. The source domain typically contains images captured
under normal lighting or sunny conditions, while the target domain consists of images from rainy, foggy, or
nighttime scenarios. This setup effectively tests the model's robustness against variations in lighting, color
shifts, and structural noise. In the cross-domain generation process, the model is required to generate images
that exhibit the characteristics of the target domain while maintaining the original structural content,
demonstrating its adaptability and mapping ability across different domains.

The Cityscapes dataset is chosen for its high-quality annotations, rich scene diversity, and strong research
relevance. As an important benchmark for cross-domain image generation, it ensures reproducibility and
fairness in model training and provides a unified standard for performance comparison among different
methods. Furthermore, its clear semantic boundaries and multi-scale object distributions make it an ideal
platform for validating graph-based feature modeling, enabling the model to learn more robust semantic and
structural relationships in complex urban environments.



4.2 Experimental Results
This paper first gives the results of the comparative experiment, as shown in Table 1.

Tablel: Comparative experimental results

Model MSE MAE PSNR SSIM
VAE|[21] 0.021 0.089 25.83 0.821
GAN]|22] 0.017 0.076 27.46 0.854
WGAN|23] 0.015 0.072 28.12 0.871
Stable-Diffusion[24] 0.013 0.068 29.05 0.887
Ours 0.010 0.061 30.42 0914

Overall, Table 1 presents the performance comparison of different generative models on the cross-domain
image generation task. It can be observed that the proposed graph-based modeling method achieves the best
performance across all metrics. In particular, it attains an MSE of 0.010 and an MAE of 0.061, which are
significantly lower than those of traditional generative models. This demonstrates that the proposed method
can effectively reduce reconstruction errors during cross-domain mapping and ensure pixel-level accuracy in
the generated images. In contrast, traditional VAE and GAN models, which lack structural constraints, often
suffer from texture blurring or semantic misalignment in complex scenes. By introducing graph-based
modeling, the proposed approach achieves more stable cross-domain feature alignment and reconstruction.

Further analysis of the PSNR metric shows that the proposed method performs exceptionally well in image
sharpness and detail preservation. It achieves a PSNR of 30.42, improving by 1.37 units compared with
Stable Diffusion, indicating that the model can maintain high-quality visual reconstruction when handling
variations in lighting, color, and texture between domains. This advantage stems from the graph convolution
mechanism, which enables the model to capture high-level semantic structures. As a result, the model not
only focuses on local textures but also learns spatial dependencies between objects, ensuring globally
consistent semantic layouts during generation.

In terms of SSIM, the proposed method also achieves a remarkable improvement, reaching 0.914. This
indicates that the generated images show better structural similarity and visual coherence than those produced
by other methods. Traditional GAN-based models often produce distortions or artifacts when faced with large
domain gaps. In contrast, the introduction of graph structures allows explicit modeling of relationships
between nodes, effectively preserving topological continuity and geometric consistency. This property
enables the model to maintain the spatial integrity of objects and generate semantically coherent structures
within the target domain style, improving the overall realism of generated images.

In summary, the proposed model achieves superior results across multiple metrics, including reconstruction
error, structural similarity, and image quality. These results strongly validate the effectiveness of the graph-
based cross-domain generation mechanism. By incorporating graph topological constraints in the feature
space, the model facilitates efficient information transfer and structural alignment across domains,
overcoming the limitations of pixel-level mapping in traditional generative methods. This approach not only
provides a new technical pathway for cross-domain image translation but also offers practical support for
advancing the theoretical development of structured generation.

This paper also presents a sensitivity experiment on the number of graph convolution layers to the single-
metric MAE, and the experimental results are shown in Figure 2.



Sensitivity of MAE to Number of Graph Convolution Layers

0.08
--_0.064 0.063
.. 0.061 __,

0.06 \'\W\ A \§
e \ \
< 0.04 \ ‘ \\\
0.02 \ "/, / \

N 7 \

0.00 7 \ G \\\ : 7% :\\
’ 1Layer 2Llayers 3layers 4 lLayers ©5Llayers 6 Layers

Graph Convolution Layers

Figure 2. Sensitivity experiment of the number of graph convolution layers to single-index MAE

As shown in the figure, with the increase in the number of graph convolution layers, the model's MAE first
decreases and then slightly increases. Specifically, when the number of layers increases from 1 to 5, the MAE
decreases from 0.078 to its lowest value of 0.061. This indicates that adding more graph convolution layers
effectively enhances the structural representation of cross-domain features, enabling the model to achieve
more accurate semantic alignment across domains. This trend suggests that shallow networks cannot fully
capture higher-order dependencies among graph nodes, while deeper graph convolutions strengthen semantic
propagation and structural constraints, thereby reducing generation errors.

When the number of layers exceeds 5, the MAE slightly increases to 0.063, indicating that overly deep graph
convolution layers may cause an over-smoothing effect, which weakens the distinction between node
representations. This feature degradation makes it difficult for the model to preserve local structural
differences, leading to minor information loss during cross-domain mapping. Therefore, the improvement in
model performance tends to saturate or even decline beyond a certain depth, showing that proper control of
the number of graph convolution layers is crucial for maintaining generation quality.

The overall trend demonstrates that the depth of the graph structure is closely related to the model's
generalization ability in cross-domain generation tasks. A moderate number of layers achieves a balance
between global and local information, ensuring both semantic consistency and geometric integrity. By
aggregating features across graph convolution layers, the model can better capture complex structural
relationships between domains, maintaining content coherence and style consistency during visual
transformation. This structure-based feature propagation mechanism is one of the key reasons why the
proposed method outperforms traditional pixel-level mapping approaches.

In summary, the sensitivity experiment on the number of graph convolution layers reveals the trade-off
between structural modeling capacity and feature smoothing. Deeper graph structures can enhance the
model's ability to capture global dependencies, while moderate depth helps avoid structural information loss
caused by excessive smoothing. These findings further validate the advantages of the proposed graph-based
cross-domain image generation framework in structural representation and semantic consistency, providing
valuable guidance for future model design and structural optimization.

5. Conclusion

This study focuses on the task of cross-domain image generation. To address the limitations of traditional
generative models in structural preservation and semantic consistency, it proposes a cross-domain image
generation method based on graph-structured modeling. The proposed method introduces nodes and edges



into the feature space to explicitly model the relationships among different semantic regions, enabling high-
quality feature transfer between the source and target domains. Experimental results show that the proposed
method outperforms mainstream generative models across multiple evaluation metrics and effectively
alleviates common problems such as semantic drift and geometric distortion in cross-domain mapping. With
global constraints imposed by the graph structure, the model maintains both content consistency and style
authenticity, providing a structure-driven solution for cross-domain generation tasks.

From a theoretical perspective, this research extends the modeling paradigm of cross-domain image
generation by transforming traditional pixel-space mapping into relational learning in graph space. The
introduction of graph convolution allows the model to capture high-order dependencies and topological
features among nodes, achieving structurally consistent semantic reconstruction at the global level. This
structured generation framework improves both interpretability and generalization, and it provides new
directions for related tasks such as style transfer, image restoration, and structural reconstruction. The stable
performance of the model across different domains demonstrates that graph-structured modeling can
effectively enhance the adaptability of deep generative networks to complex distribution shifts, offering
theoretical support for cross-modal visual tasks.

From an application perspective, this research has significant practical value. Cross-domain image generation
plays an important role in fields such as medical image synthesis, autonomous driving adaptation, remote
sensing enhancement, and virtual reality content creation. By embedding geometric and semantic constraints
within the graph structure, the model can generate high-quality images under varying data sources and
acquisition conditions, improving system robustness and applicability across multiple environments and tasks.
In scenarios with high annotation costs or large domain discrepancies, the proposed method can effectively
achieve data augmentation and domain adaptation, promoting the deployment and scalability of intelligent
visual systems in real-world engineering applications.

Future research can be further extended in several directions. One direction is to explore the integration of
graph-structured modeling with diffusion-based generative models and variational autoencoders to enhance
fine-grained details and output diversity. Another direction is to introduce dynamic graph structures or
adaptive adjacency modeling, allowing the model to automatically learn structural topologies based on input
features and improve its adaptability in complex scenes. In addition, future work may incorporate multi-
modal information such as text, depth maps, or semantic labels to enable controllable generation and multi-
dimensional collaborative learning under cross-domain conditions. By further advancing the theory of
structure-aware generation, this research is expected to promote the development of cross-domain visual
generation toward intelligence, interpretability, and practical application, providing a solid technical
foundation for multi-scenario artificial intelligence systems.
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