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Abstract: Machine learning techniques offer significant advantages over traditional economic modeling
methods, particularly in capturing complex nonlinear relationships, making them well suited for systemic
financial risk analysis. This study develops a machine learning-based framework for monitoring and early
warning of systemic financial risk, supported by both theoretical analysis and empirical evidence. Early
warning indicators are constructed across eight dimensions, including macroeconomic fundamentals,
monetary conditions, fiscal status, financial markets, price dynamics, foreign exchange markets, leverage
levels, and the banking system. Five representative machine learning models, along with ensemble learning
approaches, are employed to forecast systemic financial risk. Empirical results indicate that machine
learning models consistently outperform traditional linear models in both in-sample and out-of-sample
settings. While the Lasso model achieves superior short-term forecasting performance, the SVM model
demonstrates stronger predictive capability over longer horizons. Ensemble models effectively balance
predictive accuracy and robustness. Furthermore, partial dependence analysis enhances model
interpretability by revealing nonlinear effects and key risk drivers. Exchange rates, money supply, market
interest rates, and industrial product prices emerge as critical determinants of systemic financial risk.
Targeted monitoring of these variables can support timely risk identification and early intervention.
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1. Introduction

In recent years, artificial intelligence technologies-particularly machine learning-have brought profound
transformations across many industries, promoting innovation and development in related fields. The
financial sector is no exception. With the continuous advancement of financial technology, finance has
undergone or is undergoing significant transformations at multiple levels. In the field of financial risk
management, as modern financial systems become increasingly complex, the limitations of traditional risk
modeling approaches have become more evident. In contrast, machine learning methods are well suited to
capturing complex nonlinear relationships among variables. Compared with conventional economic analysis
and forecasting techniques, machine learning offers notable potential advantages, enabling more effective
modeling and prediction of economic and financial systems, which are complex and open systems. Owing to
these advantages, academic research on artificial intelligence and machine learning has expanded rapidly. In
top-tier economics and finance journals, an increasing number of studies have applied machine learning
models to address economic and financial problems. For example, prior research has examined the
effectiveness of machine learning models in predicting bond risk premia [1,2], investigated the application of



machine learning in measuring financial market microstructure [3], and analyzed investor decision-making
under private information using machine learning techniques [4].

With respect to financial risk monitoring and early warning, early studies have demonstrated that machine
learning has considerable potential in predicting currency crises, banking crises, and economic recessions [5-
7]. However, financial crises or systemic financial risk events occur relatively infrequently, which leads to
limited sample sizes in empirical modeling. This constraint may restrict the learning and predictive capability
of machine learning models. Using quantitative indicators of systemic financial risk as prediction targets can
help mitigate this limitation. Existing systemic financial risk early warning models developed in the literature
are mostly based on linear analytical methods to select relevant indicators for risk prediction [8]. Some
studies have constructed indicator systems and applied models such as the Markov regime-switching
framework to identify high- and low-risk regimes [9,10]. Only a small number of studies attempt to employ
specific machine learning models to forecast systemic financial risk [11-14].

The existing literature mainly selects macroeconomic and financial market indicators to predict systemic
financial risk, which can be further categorized into macroeconomic indicators (e.g., economic growth,
inflation, interest rates, money supply), banking sector indicators (e.g., total social financing, capital
adequacy ratios, non-performing loan ratios), stock market indicators (e.g., returns, volatility, liquidity), bond
market indicators (e.g., yield curves, credit spreads, term spreads), and foreign exchange market indicators
(e.g., foreign exchange reserves, exchange rates). For instance, a financial stress index constructed by a major
central banking institution incorporates 18 financial variables, including interest rates, spreads, and stock
market volatility [15]. Other studies have examined the predictive power of more than thirty financial
indicators-including economic growth, foreign exchange reserves, money supply, and interest rates-for
sovereign debt crises [16]. Additional research has selected indicators from multiple dimensions, such as debt
exposure, external sector conditions, macroeconomic performance, and the banking sector, to construct early
warning systems for systemic financial risk [17]. Some studies have developed financial stress indices
covering multiple subsystems, including banking, bond, equity, foreign exchange, real estate, and derivatives
markets, and further synthesized static and dynamic weighted financial stress indices [18]. Related work has
also selected indicators from several financial sub-markets-such as credit, capital, foreign exchange, bond,
and money markets-to measure financial system pressure [19]. Furthermore, comprehensive indicator
systems incorporating banking, securities markets, international reserves, international trade, balance of
payments, economic growth, money supply, and household living conditions have been proposed to predict
systemic financial risk [20].

Based on this literature, this paper approaches systemic financial risk from a global and endogenous
perspective and constructs an indicator system at the macro level of the economic-financial system. The focus
is on comparing and optimizing appropriate machine learning methods to develop a more effective nonlinear
monitoring and early warning framework for systemic financial risk. Specifically, this study compares
mainstream machine learning models-including Lasso regression, support vector machines (SVM), random
forests (Random Forest), extreme gradient boosting (XGBoost), and neural networks-as well as their
ensemble models.

Compared with the existing literature on financial risk prediction and early warning, the incremental
contributions and innovations of this paper are as follows. First, while most studies employ a single machine
learning model to predict systemic financial risk, this paper proposes a nonlinear early warning system based
on the comparative analysis of multiple machine learning models and further integrates optimized model
combinations. Empirical results demonstrate that the proposed system achieves more accurate estimation and
prediction of systemic financial risk. Second, due to the “black-box”  nature of machine learning, few
studies conduct comprehensive and effective analyses of variable importance within machine learning models.
This paper applies multiple interpretable modeling techniques to partially open the black box of machine



learning, thereby enhancing the economic interpretability and stability of the models. Specifically, feature
importance measures (including SDT) and partial dependence plots (PDP) are employed to evaluate the
relative importance of variables, enabling an examination of the internal structure of the prediction models
and improving their credibility and reliability.

2. Models and Methods

Mainstream machine learning models include regularized regression methods, support vector machines, tree-
based models (such as decision trees, random forests, and boosting models), as well as neural networks. No
single machine learning model consistently outperforms others across all forecasting tasks. Therefore, for a
given prediction problem, it is necessary to select the most appropriate model based on practical
considerations. In this study, Lasso regression, support vector machines (SVM), random forests, extreme
gradient boosting (XGBoost), neural networks, and ensemble modeling approaches are selected as candidate
methods. By comparing individual models and constructing ensemble models, this study aims to identify
optimal modeling strategies for systemic financial risk forecasting and early warning.

2.1 Machine Learning Models

To account for the nonlinear and high-dimensional nature of systemic financial risk, this study applies a
diverse suite of machine learning models, including Lasso, ridge regression, elastic net, support vector
machines (SVM), random forests (RF), extreme gradient boosting (XGBoost), and neural networks. The
decision to incorporate neural and deep learning models is supported by Xu et al. [21], who demonstrated
that attention-based deep architectures can significantly enhance forecasting performance in financial time
series by dynamically capturing latent dependencies and abrupt shifts in risk dynamics.

Recognizing that single models may offer limited robustness across complex economic regimes, we also
adopt ensemble learning methods to aggregate model outputs. Inspired by the ensemble logic used in recent
interpretable financial Al frameworks (Long et al. [22]), we design two types of ensemble strategies. The
first relies on weighting-based averaging, including both equal-weight and DAR-weight schemes. This
approach aligns with the growing consensus that model aggregation can mitigate overfitting and balance
performance across different data segments. The second ensemble strategy draws inspiration from the multi-
layer frameworks utilized in distributed anomaly detection systems, as exemplified by Feng et al. [23], who
demonstrated the potential of hierarchical architectures to integrate heterogeneous model outputs for
improved decision-making. Building on this idea, we design a two-layer ensemble model in which
predictions from multiple base learners serve as inputs to a linear regression meta-model. This architecture
enables the incorporation of diverse predictive signals in a structured manner.

2.2 Model Evaluation Metrics

To comprehensively evaluate the predictive performance of the proposed models, this study adopts a set of
widely used evaluation metrics that capture both numerical accuracy and directional consistency of forecasts.
Specifically, root mean square error (RMSE) and mean absolute error (MAE) are employed to measure the
magnitude of prediction errors, with RMSE placing greater emphasis on large deviations and MAE
providing a robust assessment of average absolute discrepancies. In addition, Theil's inequality coefficient
(Theil-U) is included as a scale-independent metric to assess relative forecasting efficiency compared with
naive benchmark models.

Beyond error magnitude, directional accuracy (DAR) is incorporated to evaluate the model's ability to
correctly predict the direction of change in the target variable, which is particularly important in decision-
making scenarios where the sign of variation carries substantial practical implications. Furthermore, the



coefficient of determination (R?) is reported to quantify the proportion of variance in the observed data that
can be explained by the predictive model, thereby providing an overall measure of goodness-of-fit.

Together, these metrics offer a comprehensive and balanced evaluation framework by jointly assessing
prediction precision, stability, explanatory power, and directional reliability. The formal definitions and
calculation procedures of these evaluation metrics are presented in the formulas below:
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Smaller values of RMSE, MAE, and Theil-U indicate better predictive performance. Directional accuracy
(DAR) ranges between 0 and 1, with larger values reflecting higher accuracy in predicting the direction of
change. The coefficient of determination R’ evaluates overall model fit, where higher values correspond to
stronger predictive capability.

2.3 Variable Importance Analysis Methods

Commonly used interpretable machine learning techniques include feature importance measures, surrogate
decision trees (Surrogate Decision Trees, SDT), partial dependence plots (Partial Dependence Plot, PDP),
and Shapley values. Among these approaches, PDP not only allows for the identification of the relative
importance of variables but also enables the examination of their nonlinear effects on model outputs. Given
these advantages, this study adopts partial dependence plots as the primary tool for analyzing variable
importance.

The core idea of the PDP approach is to evaluate how changes in the values of a specific feature influence
the model's predicted output while holding all other features constant. Specifically, one feature is fixed at a
given constant value, while the remaining features are kept unchanged, generating a new set of model inputs.
The trained model is then used to produce predictions based on these modified inputs. By comparing the
resulting predictions with the original model outputs, the marginal effect of the selected feature can be
observed, thereby revealing its relative importance and influence on the prediction results.

In this study, partial dependence analysis is applied to the random forest, XGBoost, and SVM models to
examine and compare the contribution of individual features across different machine learning frameworks.

3. Variable Selection and Description
3.1 Risk Prediction and Early Warning Indicator System

Existing studies on systemic financial risk prediction generally select macroeconomic and financial market
indicators, which mainly include macroeconomic indicators, banking sector indicators, stock market



indicators, bond market indicators, and foreign exchange market indicators. Drawing on prior research [20],
and taking data availability and timeliness into account, this study constructs a comprehensive early warning
indicator system for systemic financial risk.

Specifically, indicators are selected from eight dimensions: macroeconomic fundamentals, monetary
conditions, fiscal conditions, securities and interest rate markets, price indices, foreign exchange and
exchange rate markets, leverage ratios, and the banking system. In total, 42 indicators are chosen to form the
initial indicator set for systemic financial risk prediction and early warning. The complete list of indicators

and their corresponding classifications is presented in Table 1.

Table 1: Early Warning Indicator System for Systemic Financial Risk

Indicator Dimension Indicator Name Symbol Ipdlcatpr Indicator Name Symbol
Dimension
Industrial value
added (YoY) VAI CPI (YoY) CPI
Fixed asset
investment . PPI of industrial
completed FixIny products (YoY) PPI
(cumulative YoY)
Urban real estate Retail price
development RealEs ) ) index (goY) RPI
investment (YoY) Price Indices
Total retail sales of . .
. National housing
consumer goods Retail . . House
climate index
. (YoY)
Macroeconomic
Fundamentals Urban Export value
unemployment rate Employ (YoY) Export
Purchasing Import value
Managers' Index PMI (YoY) Import
. Growth rate of
OEC.D cpmposﬁe OECD foreign exchange ForeEx
leading indicator
reserves
Business climate Fgrelgn direct
index Prosper investment FDI
(YoY)
Consumer Foreign Foreign assets / .
. Consum Exchange and Foreign
confidence index GDP
Exchange Rate
Total sqc1al Social Nf;t capital Hot
financing inflow
RMB real
Monetary Conditions MI (YoY) M1 etfective RMBEx
exchange rate
index
Leverage Household sector
M2 (YoY) M2 Ratios debt / GDP HouDebt




.. ) Non-financial
Monetization ratio

M2/GDP corporate sector Nonfin
(M2/GDP) dobt/ GDP
. Government
Fiscal budget BudRev sector debt / GovDebt
revenue (YoY) GDP

Fiscal Conditions
Real economy

ex F;;E?:uagi%{eéY) BuEx sector debt / RealDebt
P GDP
Total market value Financial sector
of listed companies / | MV/GDP asset-side debt / FinDebt
GDP GDP
Stock market Financial sector
trading volume Volume liability-side LiaDebt
(YoY) debt / GDP
Inizg)oasvkeg}?‘i%led Repoe Total deposits Deposit
(YoY)

average rate

Securities and Interest

Rate Markets Government bond
yield (1-year Bond1Y TO(";‘{IOISE)‘HS Loans
maturity) .
G bond Banking
overnment bon S _
ystem oo
yield (10-year Bond10Y Loan ;;’tiiePOSIt LTD
maturity)
Corporate bond Non-performing
i loan ratio of
yield (1-year CorplY . BLR
maturity) commercial
banks

3.2 Systemic Financial Risk

Systemic financial risk is measured using CoVaR and MES. Based on the estimated CoVaR and MES values
of all financial institutions, cross-sectional averages are computed to construct a macro-level indicator of
systemic financial risk. According to the secondary industry classification, as of the end of 2024, the listed
financial institutions included banks, insurance companies, and securities firms. Due to data availability
constraints, all indicators are constructed using observations from January 2018 onward.

The computation of CoVaR and MES relies on daily data, while the market benchmark is proxied by the
Wind All-A index. Daily observations are aggregated into monthly values by averaging within each month.
All early warning indicators are measured at a monthly frequency. Missing values in some indicators are
addressed using linear smoothing methods. Given the relatively high data requirements of machine learning
models, all variables are subjected to 95% winsorization and standardization prior to model estimation. All
raw data are obtained from the Wind database.

Figure 1 illustrates the dynamic evolution of systemic financial risk from January 2018 to December 2024.
The results show a strong co-movement between CoVaR and MES, indicating a high degree of consistency
between the two measures. Both indicators exhibit pronounced increases during periods of heightened



financial stress, followed by gradual normalization, suggesting their effectiveness in capturing cyclical
fluctuations in systemic financial risk.

0.05 4
= - CoVaR

MES

0.04 4

Risk Measure
o
o
w

o
o
~

0.01 4

0.00 1

2018 2019 2020 2021 2022 2023 2024 2025
Year

Figure 1. Trend of Systemic Financial Risk
3.3 Predictive Performance for CoVaR

Given the highly similar dynamic patterns observed for CoVaR and MES, this study focuses primarily on
CoVaR as the main target variable, while MES is used for robustness analysis. Data from January 2018 to
December 2023 are used for in-sample model estimation and parameter tuning, whereas data from January
2023 to December 2024 are reserved for out-of-sample evaluation. The dependent variable is the one-
period-ahead CoVaR. Explanatory variables include the lagged CoVaR and 42 early warning indicators
observed from period t-11 to period ¢, corresponding to information from the previous twelve months. This
setup allows the models to forecast systemic financial risk one month ahead.

All models are estimated using optimized hyperparameters and are evaluated based on both in-sample and
out-of-sample performance. Table 2 reports the prediction results. Columns 1 through 5 present the
forecasting performance of XGBoost, random forest, SVM, Lasso, and artificial neural network models,
respectively. Columns 6 and 7 report the results of two ensemble models. Specifically, Ensemble 1
combines the predictions of XGBoost, random forest, and SVM, while Ensemble 2 integrates XGBoost,
random forest, SVM, and Lasso. For comparison, Column 8 reports the prediction results obtained from a
linear OLS regression model.

It is worth noting that the ensemble models are constructed by computing the simple arithmetic average of
predictions from individual learners, which is conceptually similar to the bagging strategy commonly used
in random forest models. Compared with single-model forecasts, ensemble approaches are generally able to
achieve improvements in both predictive accuracy and stability. In this study, multiple ensemble
configurations based on two, three, and four individual models (excluding neural networks) are examined.
Overall, the ensemble model incorporating four base learners demonstrates the best predictive performance
and robustness. To further illustrate the advantages of ensemble learning, the predictive performance of
ensembles combining XGBoost, random forest, and SVM is also reported in subsequent analysis.

From the in-sample results shown in Panel A, all models exhibit relatively strong fitting performance. In
particular, the XGBoost model achieves the lowest RMSE and a directional accuracy (DAR) close to unity,
with the coefficient of determination approaching one. Although the OLS regression model performs worse
than machine learning models in terms of in-sample fit, it still attains a relatively high R’ value of
approximately 0.88. However, based on the out-of-sample results reported in Panel B, the Lasso model



delivers the best forecasting performance, with RMSE, MAE, and Theil-U values smaller than those of other
models, as well as superior DAR and R°. The SVM model ranks second in terms of predictive accuracy.

In contrast, the artificial neural network exhibits very weak out-of-sample forecasting performance,
characterized by relatively large RMSE, MAE, and Theil-U values, as well as a very low R’ of
approximately 0.02, which is even lower than that of the OLS model. This result indicates severe overfitting
of the neural network model in the in-sample period, likely due to limited sample size and the curse of
dimensionality. Consequently, neural networks are excluded from subsequent analysis.

Comparing the two ensemble models, Ensemble 1 outperforms the SVM model, indicating that although
XGBoost and random forest individually exhibit weaker out-of-sample performance, combining them with
SVM can enhance overall predictive accuracy. Ensemble 2 further improves forecasting performance by
incorporating the Lasso model, leading to more stable and accurate predictions than Ensemble 1.

Overall, the results suggest that selected machine learning models-particularly SVM and Lasso-are effective
in forecasting one-period-ahead systemic financial risk. Moreover, compared with most single-model
approaches (except Lasso), ensemble models provide more robust and stable predictive performance.

Figure 2 presents the out-of-sample fitted curves of three models-Lasso, Ensemble 2, and OLS-where the
solid line represents the realized value of systemic financial risk. It can be observed that the fitted
trajectories produced by the machine learning models closely track the actual dynamics of systemic financial
risk. In particular, the fitted series generated by the Lasso model exhibits a high correlation of 0.95 with the
realized series, while the fitted series from Ensemble 2 also shows a strong correlation of 0.93. In contrast,
the fitted curve obtained from the OLS model deviates substantially from the actual series.
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Figure 2. Out-of-Sample Fitting Results of CoVaR

These results provide clear evidence of the effectiveness of machine learning models in forecasting systemic
financial risk, whereas traditional linear models exhibit very limited out-of-sample predictive capability.

Table 2: In-Sample and Out-of-Sample Fitting Results for CoVaR

XGB RF SVM Lasso ANN Ensemble Ensemble2 OLS

Panel A: In-sample




RMSE 0.0028 0.1085 0.0953 0.2481 0.0128 0.061 0.101 0.3
MAE 0.0022 0.0718 0.0914 0.1728 0.0038 0.0513 0.0732 0.2403
Theil-U 0.0013 0.0517 0.0459 0.1211 0.006 0.029 0.0485 0.1439
DAR 0.992 0.896 0.92 0.744 0.984 0.936 0.904 0.624
R? 0.9999 0.9841 0.9877 0917 0.9998 0.995 0.9862 0.8786
Panel B: Out-of-sample
RMSE 0.5212 0.474 0.3748 0.2177 1.6514 0.3482 0.3081 1.9311
MAE 0.4638 0.4101 0.3168 0.1491 1.5452 0.2818 0.2458 1.8042
Theil-U 0.3628 0.2962 0.3224 0.1622 0.7384 0.2562 0.2284 0.7553
DAR 0.5714 0.6857 0.6286 0.7143 0.5714 0.6571 0.6571 0.4
R? 0.7764 0.7785 0.8237 0.9088 0.0222 0.832 0.8599 0.1484

3.4 Variable Importance Analysis

The Lasso model allows direct assessment of variable importance through estimated coefficients. In the
fitted Lasso model, only five variables have non-zero coefficients: the year-on-year growth rate of average
daily stock trading volume (lagged by two periods, coefficient 0.0406), the year-on-year change in PPI
(lagged by one period, coefficient-0.002), the yield of one-year government bonds (lagged by one period,
coefficient-0.0036), the yield of ten-year government bonds (lagged by twelve periods, coefficient 0.0002),
and lagged CoVaR (lagged by one period, coefficient 0.8973). These results indicate strong persistence in
systemic financial risk and highlight the substantial influence of stock market liquidity, producer prices, and
government bond yields on risk dynamics.

For tree-based models and kernel-based methods such as random forest, XGBoost, and SVM, variable
importance cannot be obtained directly from model parameters. Therefore, this study employs partial
dependence plots (PDP) to interpret these machine learning models and to mitigate their black-box nature.

The core idea of the PDP approach is to fix a specific variable at different values and examine its impact on
the predictive performance of the originally fitted model. Since all variables are standardized prior to model
estimation, each variable is sequentially assigned values of -1.5, -1, -0.5, 0, 0.5, 1, and 1.5. The resulting
changes in model performance-measured by RMSE-are then evaluated. A rapid increase in RMSE indicates
relatively high importance of the corresponding variable, whereas a small change in RMSE suggests lower
importance. In addition to assessing relative importance, PDPs also reveal nonlinear effects by illustrating
how model sensitivity varies across different values of a given variable.

Figure 3 reports the PDP curves of two representative variables-the RMB real effective exchange rate and
the yield of one-year corporate bonds. The results show pronounced nonlinear effects in the SVM model.
When the variable values are close to zero, RMSE remains relatively low, indicating limited impact on
model performance. However, as the variable values move away from zero-particularly toward the left tail-
their importance increases substantially. Both variables also exhibit strong nonlinear patterns in the
XGBoost model. Specifically, the RMB exchange rate has a limited effect when its value is below 0.5, but
once it exceeds 1, it significantly deteriorates model performance. The influence of the one-year corporate
bond yield is concentrated mainly in the interval between -0.5 and 0. Similar nonlinear relationships are



observed in the random forest model, although

their magnitude is weaker compared with SVM and

XGBoost.
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Figure 3. Partial dependence plots (PDPs) for selected variables.

Overall, Figure 3 clearly demonstrates that the relationships between explanatory variables and systemic
financial risk are not purely linear but exhibit substantial nonlinear characteristics.

To further evaluate relative importance across variables, the effects at different values are averaged for each
variable. Figure 4 presents the ten most influential variables, excluding CoVaR itself. PPI, the RMB
exchange rate, the one-year corporate bond yield, and the one-year government bond yield consistently exert
strong effects across all models. In addition, foreign assets, the business climate index, and CPI show high
importance in the XGBoost model, while consumer confidence and the loan-to-deposit ratio play a more

prominent role in the SVM model.
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Figure 4. Relative variable importance based on partial dependence analysis.

3.5 Analysis Based on MES

In this subsection, CoVaR is replaced by MES as the dependent variable, and the same modeling and
evaluation procedures are applied for robustness analysis (results omitted for brevity). The empirical
findings are largely consistent with those reported in Table 2. Both machine learning models and the OLS
model exhibit strong in-sample fitting performance, with XGBoost again achieving the best results. In



particular, the RMSE decreases to 0.0038, directional accuracy (DAR) reaches 0.97, and the coefficient of
determination approaches unity.

However, in the out-of-sample evaluation, the predictive performance of XGBoost, SVM, and OLS
deteriorates substantially, whereas random forest and Lasso exhibit stronger forecasting ability, with Lasso
performing particularly well. Ensemble models continue to demonstrate superior performance. The
Ensemble model significantly outperforms random forest, while Ensemble2 performs slightly worse than
Lasso. These results further confirm that ensemble learning is an effective approach for improving
predictive accuracy and robustness.

Overall, machine learning models-especially Lasso and ensemble-based approaches-are effective in
forecasting systemic financial risk measured by MES. Although traditional linear models can achieve
reasonable in-sample fit, their out-of-sample predictive capability remains limited.

Variable importance analysis based on PDP is also conducted for MES-based prediction models (figures
omitted). The results are largely consistent with those reported in Figure 4. The RMB exchange rate, M1,
and the one-year corporate bond yield remain among the most influential variables across all three models.
In contrast to CoVaR-based prediction, PPI plays a less prominent role, while the OECD leading indicator
and bank lending variables become more important. This difference may stem from the distinct definitions
of CoVaR and MES. Specifically, CoVaR primarily captures extreme downside risk, whereas MES
measures the expected loss conditional on extreme market downturns, reflecting average losses beyond tail
risk.

Taken together, regardless of whether CoVaR or MES is used to quantify systemic financial risk, machine
learning models exhibit strong predictive capability and similar patterns in variable importance. These
findings suggest that early warning systems should integrate information from multiple risk measures and
indicators to enable more refined monitoring and timely mitigation of systemic financial risk.

3.6 Medium- and Long-Term Forecasting

Motivated by the strong short-term forecasting performance of machine learning models, this subsection
extends the prediction horizon to examine their ability to forecast medium- and long-term systemic financial
risk. Specifically, three-month-ahead and six-month-ahead forecasts are conducted.

For three-month-ahead prediction, the lagged values of CoVaR and all early warning indicators from period
t-11to period ttt are used to predict systemic financial risk at period t+3. Similarly, for six-month-ahead
prediction, the same set of lagged explanatory variables is used to forecast systemic financial risk at period
t+6. The modeling strategy is extended accordingly. Table 3 reports the out-of-sample forecasting results.

Compared with the one-period-ahead forecasts reported in Table 2, most models exhibit weaker
performance in medium- and long-term prediction, as reflected by higher RMSE, MAE, and Theil-U values,
as well as lower DAR and R’. However, the SVM model demonstrates relatively stronger performance in
longer-horizon forecasting than in short-term prediction. Both ensemble models continue to deliver stable
performance, particularly Ensemble2, which integrates four different base learners. Ensemble2 exhibits
strong robustness across different forecasting horizons, performing consistently well in both three-month-
ahead and six-month-ahead predictions.

Overall, these results indicate that while predictive accuracy generally declines as the forecast horizon
increases, ensemble learning methods-especially those incorporating a diverse set of base models-offer
superior stability and robustness in medium- and long-term forecasting of systemic financial risk.



Table 3: Medium- and Long-Term Forecasting Performance Based on CoVaR

Panel A: 3-Month-Ahead Forecast
Metric XGB RF SVM Lasso Ensemble Ensemble2 OLS
RMSE 0.7461 0.7336 0.4124 0.5458 0.6054 0.5815 2.0493
MAE 0.6686 0.6573 0.3476 0.4693 0.5521 0.5302 1.9621
Theil-U 0.5745 0.5903 0.4219 0.4595 0.5292 0.5075 0.826
DAR 0.4545 0.5152 0.6364 0.6364 0.5758 0.6061 0.4545
R? 0.4394 0.5797 0.7456 0.6259 0.6385 0.6546 0.1424
Panel B: 6-Month-Ahead Forecast
Metric XGB RF SVM Lasso Ensemble Ensemble2 OLS
RMSE 1.2625 0.9189 0.3511 0.5047 0.8178 0.5655 22177
MAE 1.138 0.8371 0.305 0.3948 0.7217 0.5129 2.1605
Theil-U 0.8529 0.7934 0.5181 0.4211 0.7857 0.6857 0.8935
DAR 0.5 0.5667 0.6333 0.6667 0.6 0.6 0.6333
R? 0.0027 0.2443 0.6691 0.4699 0.1908 0.3512 0.1154
Panel C: 12-Month-Ahead Forecast
Metric XGB RF SVM Lasso Ensemble Ensemble2 OLS
RMSE 0.8602 0.6603 0.309 1.0048 0.572 0.541 2.5066
MAE 0.7494 0.5609 0.2413 0.8308 0.4769 0.4798 2.4722
Theil-U 0.7723 0.9116 0.4047 0.5937 0.7404 0.5654 0.9647
DAR 0.4583 0.4583 0.625 0.5417 0.4167 0.5833 0.625
R? 0.2609 0.2019 0.1377 0.0507 0.2341 0.1549 0.0014

4. Conclusion

This study proposes a systemic financial risk monitoring and early warning framework based on machine
learning techniques, and provides both theoretical justification and empirical validation from multiple
perspectives. Specifically, using monthly macroeconomic and financial data from January 2018 to
December 2024, early warning indicators are constructed from eight dimensions, including economic
fundamentals, monetary supply, fiscal conditions, securities and interest rate markets, price indices, foreign
exchange and exchange rate markets, leverage, and the banking system. Both linear regression and five
representative machine learning models are employed to predict systemic financial risk.

The empirical results yield several key findings. First, compared with the OLS model, machine learning
models that are capable of capturing nonlinear relationships demonstrate superior predictive performance in
both in-sample fitting and out-of-sample forecasting. Second, regardless of whether systemic financial risk
is measured by CoVaR or MES, the Lasso model consistently exhibits strong predictive ability. Although
XGBoost, random forest, and neural network models achieve outstanding in-sample performance, their out-
of-sample performance is relatively unstable. This suggests that when sample size is limited, more complex
machine learning models are more prone to overfitting, which in turn leads to weaker out-of-sample



predictive accuracy. Third, the SVM model performs particularly well in multi-step-ahead forecasting.
Moreover, compared with single machine learning models (except SVM), ensemble models are able to
outperform most individual predictors, thereby enhancing the robustness and reliability of forecasting results.

Finally, partial dependence plots (PDPs) are shown to be effective in improving the interpretability of
machine learning models by revealing nonlinear effects of key variables on systemic financial risk. Among
all early warning indicators, exchange rates, monetary supply, market interest rates, and industrial price
indices emerge as the most influential factors. Strengthening the monitoring of these variables can therefore
contribute to earlier detection and more effective prevention of systemic financial risk.
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