
Enhancing Spam Detection: An Improved Bloom Filter
Approach with Reduced False Positive Rates
Sebastian Nelson
Yeshiva University, New York City, USA
Sebastian889@gmail.com

Abstract:In the age of big data, the prevalence and impact of spam are increasing significantly.
The anti-spam software integrated into many corporate email systems is becoming increasingly
ineffective at managing the growing volume of spam. This paper explores an enhanced spam
detection method based on the Bloom Filter. This method is straightforward, efficient, easy to
implement, and exhibits a significantly lower false positive rate compared to the traditional Bloom
Filter.

Keywords:Bloom Filter; Hash function; False positive rate; Spam.

1. Introduction

Bloom Filter, proposed in 1970 by Burton Howard Bloom, is a very space efficient probabilisticdata
structure designed to determine whether an element exists in a set. If we want to determine whether
an element is in a set or not, the traditional solution is to save all the elements and then determine
by comparison. Chain table, tree and other data structure are all this kind of thinking. However, as
the element in the set increases, it needs more and more storage space, and the retrieval speed is
getting slower (O(n), O(logn)).
The advantage of Bloom Filter is that both spatial efficiency and query time efficiency are much
better than that of ordinary algorithms. Hash tables can also be used to determine whether an
element is in a set and the retrieval time efficiency is very high, but the same problem can be
achieved in Bloom Filter with only 1/4 or 1/8 or less space complexity of hash tables. An element
can be inserted in Bloom Filter, but an existing element cannot be deleted. Bloom Filterwon't have
false negative at all, and all the elements that exist in Bloom Filter can be looked up.One drawback
of Bloom Filter, however, is that it can produce false positive, and the more elements are, the
greater the false positive rate will be. The algorithm proposed in this paper is to reduce the false
positive rate of Bloom Filter.

2. An Improved Bloom Filter

2.1. Classic Bloom Filter
An empty bloom filter is a bit array with m binary bits, and each bit array is initialized to 0. There is
a set and define that there are k different hash functions. A value greater than or equal to 1 and less
than or equal to m is calculated after each element is substituted into a hash function, that is, and
each element can get k value by substituting k hash functions. Of course, the perfect hash function
is one of those hash functions that can randomly and uniformly hashall the elements to n different
positions.

To add an element into a bloom filter, namely, to get k value by substituting the element in k hash

Transactions on Computational and Scientific Methods | Vo. 3, No. 1, 2023
ISSN: 2998-8780
https://pspress.org/index.php/tcsm
Pinnacle Science Press

function, and set the bit corresponding to the k value in the bit array to 1.
To query an element, namely, to determine whether it is in a set, get k value by substituting the
element in k hash function. If the bits in this bit array corresponding by k value are all 1, then the
element is in the set; if neither one is 1, then the element is not in the set.
Deleting an element is not allowed because the corresponding k bits will be set to 0 in that case,and
there may be bits corresponding by other elements, and therefore, this is absolutely forbidden.
The algorithm code is described as follows [1]:
Procedure Bloom Filter (set A, hash functions, integer m)

returns filter
filter = allocate m bits initialized to 0
foreach ai in A:
foreach hash function hj:

filter[hj(ai)] = 1
end foreach

end foreach
return filter

: X * {m1..m}.
The algorithm code design is as follows[2]:
Procedure BloomFilter(set A, hash functions, integer m)

returns filter
filter = allocate m bits initialized to 0
foreach ai in A:
foreach hash function hj:

filter[hj(ai)] = 1
end foreach
foreach hash function fj:

filter[fj(a*i)] = 1
end foreach
end foreach
return filter

2.2. Mathematical Analysis
One notable feature of the classic Bloom Filter is that there is an obvious trade-off between thesize
of the filter and the false positive rate. Obviously, after inserting n elements into a filter with the
size of m by using k hash functions, the probability of a particular bit remaining 0 isp0 , as follows:

(1)

Let's assume that the perfect hash function can evenly hash elements in space {1.m}. In practice,good
results are achieved in virtue of MD5 and other hash functions[10]. Thus, the probability
of false positive (i. e., the probability of all k-bits being placed before 1) is perr , as follows:

(2)

Regard the Formula (2) as a function of k f (k) , and find the best value, we can get the lowest
false positive rate at k ln 2m . When the false positive rate is set, the space-to-element ratio

n
m / n is obtained by Formula (2):

(3)

In practical use, there is no infinite increase in the number of hash functions, usually using a small
number of hash functions. Because the computational overhead of every hash function is constant,
the incremental benefit of adding a new hash function is reduced after a certain threshold, as shown
in Fig. 1.

Fig 1. The Relationship between the False Positive Rate and the Number of Hash Functions.
When Bloom Filter space element ratio (m/ n = 32),22 hash functions are used to

minimize the false positive rate. When the number of hash functions exceeds 10, eachadditional
hash function does not significantly reduce the false positive rate.

1.E-01

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07
1 4 7 10 13 16 19 22 25 28

31

Number of hash functions

70

60

50

40

30

20

10

0

k=2

k=4

k=8

k=1

6

k=3
2

1.E-05 1.E-04 1.E-03
1.E-02 1.E-01

Error rate (log
scale)

Fig 2. The Size of Bloom Filter (m / n) Acts as a Function of the False Positive Rate.
Different curves represent different numbers of used hash functions. Obviously, when m / n

<30, using 32 hash functions is no more beneficial than just using 8 in conflict rates.

At the same time, the relationship between Bloom Filter's memory allocation and false positive rate
can be obtained by Formulas (2) (3), as shown in Fig. 3.
Obviously, as shown in Figs. 2 and 3 above, the better results will not be achieved as the hash
functions get more in actual application. Therefore, we can not reduce the false positive rate by
increasing the number of hash functions infinitely, and increasing the number of hash functionswill
not significantly reduce the false positive rate, but increase the overhead of time and space. One
feasible method is to reduce the conflict rate by extracting the eigenvalues from the elements and
hashing the eigenvalues in virtue of the algorithm which is put forward in this paper.
The time complexity of the improved algorithm is O (k + d), which is still constant, and there isnot
much increase compared with the time complexity O (k) in the classical Bloom Filter. However, the
cost in space is not increased much, so we can add it properly according to the reality when we use
it. Generally speaking, the number of hash function d should be set to be smaller than the number of
original hash function k. If d/ k = 1/3, then increase the bit array size by about 1/3.
It is necessary to explain that, through the above algorithm description in Part 2 and Part 3, wecan
also see that the improved algorithm, although it greatly reduces the false positive rate, does not
increase the difficulty of implementation of the algorithm, which shows that the improved algorithm
is simple and efficient.
In addition, it is important to note that the total length of Bloom Filter and the length of each part
can be calculated and estimated. All can be obtained based on the Formula (3). As long as the error
rate is fixed, the length of m can be obtained from the Formula (3). The improved algorithm can
obtain the length of {1..m1} and {m1..m}, respectively.

3. The Improved Bloom Filter for Is Used for Spam System

In the field of e-mail systems, there is a huge amount of spams. The main anti-spam technologiesused
in today's e-mail system are reverse DNS resolution (PTR), blacklist, white list, real-time blacklist
(RBL), gray list (GrayList), Bayesian intelligent analysis, SPF of e-mail sender addresstechnology
and similar Microsoft-provided anti-spam Send ID scheme and so on. These technical solutions are
often used synthetically, and an e-mail system uses all of the above schemes to achieve the best
effect of filtering spams. Due to the adoption of many schemes, anti-spam system will take up a large
number of system resources, a letter has to pass 7 to 8 differentsolutions analysis filtering intercept.
Many large-scale e-mail systems send and receive large amounts of e-mails every day, so the
efficiency of anti-spam e-mail system is being highly valuedincreasingly[3].
Common e-mail system uses black-and-white list mechanism to manage e-mail, and the normal e-
mails are put into the white list, while the spams are marked into the blacklist. Some e-mail systems
also use real-time blacklists (RBL) or gray lists (GrayList) technology schemes. Whether it's a
blacklist, a white list, or a real-time blacklist (RBL) or GrayList, the lists in thesetechnical solutions
need to be stored in the database[4].
Retrieve a database to look up if the e-mail received belongs to the list set by the system. However,
the time efficiency of the database is extremely low, and because the large-scale e- mail system will
keep receiving new mail, it will cause too much pressure on the database, and the resource
occupancy is extremely high. E-mail systems require rapid identification of e-mailaddresses to filter
out spams[5]. Consequently, it has become increasingly impractical todetermine whether the mail
received belongs to the list set up by the system or not by directlyquerying the database, and many
e-mail systems apply the Bloom Filter to query the list. Bloom Filter accesses much faster than a
database. The main reasons why the Bloom Filter accesses much faster than a database are as
follows:
First, differences in storage modes and access modes make Bloom Filter access faster than a

http://www.corp-email.com/merak/index.html

i

database. Database is usually stored in the hard disk or the disk array composed by hard disks,and
the access efficiency of hard disk is much lower than that of memory. In addition, large databases
often require cloud storage. Cloud storage requires remote access over the network,while the remote
access is always delayed. These have led to time-consuming and inefficient access to the database.
Bloom Filter is a compact data structure with much less storage than a database and can generally
be stored in memory. This ensures that Bloom Filter not needs to access both the hard disk and the
cloud when it is stored in local memory, greatly increasing access speed.
Second, from the analysis of lookup algorithms, the different search algorithms make Bloom Filter
access faster than a database. Bloom Filter uses hash lookup, and the lookup efficiency of the
algorithm is very high. While databases are mostly indexed, they are much less efficient.
The access speed of the classical Bloom Filter is relatively fast, but there is weakness of false
positives. If you can reduce the false positive rate of Bloom Filter, it will effectively improve theuser
sensitivity of e-mail system. The improved Bloom Filter proposed in this paper can reducethe false
positive rate effectively. In particular, since the algorithm presented in this paper extracts
eigenvalues, it will effectively reduce the false positive rate in the case of many similar elements.
However, people who send spams often send a lot of spams, and the similarity of these e-mails is
very high, which will greatly increase the false positive rate of the classic BloomFilter. If adopt the
improved Bloom Filter algorithm proposed in this paper in the spam systems,there will be lower false
positive rates.
In practice, the improved Bloom Filter algorithm proposed in this paper can be used to judge spams.
The spams are stored in Bloom Filter, and the spams are quickly identified with the improved
Bloom Filter algorithm. For all e-mail addresses which are identified as spam, as shown in Table 1,
each of these elements can be hashed into the area of {1..m1} of a bit array ofm bits using the k hash
function, as the same in the classic Bloom Filter algorithm, and meanwhile, the eigenvalues are
simultaneously extracted, as shown in Table 1.

Table 1. Element Hash and Eigenvalue Extraction. (The e-mail addresses are the element,and
some ASCII codes are the eigenvalue)

a value of a eigenvalues hash value (hi : X {1..m1})

a1 x1x2x3.x4x5x6.x7x8x9.@xx...x.com x1,x4,x7 h1(a1),
h2(a1), …,hj(a1),... ,hk(a1)

a2 y1y2y3.y4y5y6.y7y8y9.@yy...y.net y1,y4,y7 h1(a2),
h2(a2), …,hj(a2),... ,hk(a2)

a3 z1z2z3.z4z5z6.z7z8z9.@zz...z.org z1,z4,z7 h1(a3),
h2(a3), …,hj(a3),... ,hk(a3)

a4 u1u2u3.u4u5u6.u7u8u9.@uu...u.net u1,u4,u7 h1(a4),
h2(a4), …,hj(a4),... ,hk(a4)

a5 http://www.v1v2v3.v4v5v6.v7v8v9.com v1,v4,v7 h1(a5),
h2(a5), …,hj(a5),... ,hk(a5)

… … … …

For each element's eigenvalue a* , a separate d hash function is used to hash to the area of
{m1..m}, as shown in Table 2.

In querying, first compute the e-mail address using the k hash function and get k value of {1..m},if all
the bits corresponding to k value are 1, then the d hash functions corresponding to their eigenvalues
are calculated to get the bit corresponding by d value, and if all the bits corresponding to d value are
1, then the e-mails are judged as spams.
By doing so, the spam can be determined more accurately and quickly, and the accidental damage
to the normal email similar to the spam can be avoided as much as possible.

Table 2. Hash Eigenvalue Again

mailto:x1x2x3.x4x5x6.x7x8x9.@xx.x.com
mailto:y1y2y3.y4y5y6.y7y8y9.@yy.y.net
mailto:z1z2z3.z4z5z6.z7z8z9.@zz.z.org
mailto:u1u2u3.u4u5u6.u7u8u9.@uu.u.net
http://www.v1v2v3.v4v5v6.v7v8v9.com/

a* value of a* hash value(f j : X {m1..m})
*

a*1 x1x4x7 f1(a1), f2(a1), …,fj(a1),... ,fd(a1)
a*2 y1y4y7 f1(a2), f2(a2), …,fj(a2),... ,fd(a2)
a*3 z1z4z7 f1(a3), f2(a3), …,fj(a3),... ,fd(a3)
a*4 u1u4u7 f1(a4), f2(a4), …,fj(a4),... ,fd(a4)
a*5 v1v4v7 f1(a5), f2(a5), …,fj(a5),... ,fd(a5)
...

In practice, there are a variety of methods for eigenvalues. For example, take the domain name
ASCII code or Unicode code, or take the length of the domain name, or use some arithmetic
operations such as midsquare method, division method, or simply use the random function to get
the random value.

4. Summary

In practice, the classical Bloom Filter can't reduce the false positive rate by adding hash function
infinitely, but it needs to make appropriate trade-off between space, time and false positive rate. At the
same time, increasing the number of hash function largely does not significantly reduce the effect of
false positive rate after a certain threshold, but increases the cost of time and space.In fact, the false
positives are mostly caused by the similar elements, and the similarity betweenthe similar elements
can be greatly reduced by extracting the eigenvalues. Therefore, the improved Bloom filter
algorithm of hashing eigenvalues again proposed in this paper can reduce the false positive rate
effectively.
At the same time, the improved Bloom Filter algorithm inherits the advantages of time and space
efficiency of the classical Bloom Filter. The implementation of the algorithm is also very concise.
Moreover, this paper also introduces the application of improved algorithm in the query of spams.
Common e-mail systems use blacklist and white list schemes, and some also use real- time blacklist
(RBL) or gray list (GrayList) schemes. If the improved Bloom Filter algorithm proposed in this
paper is used, it can not only have the running efficiency of the classical BloomFilter, but also have
the lower false positive rate than that of the classical Bloom Filter.

References
[1] B. H. Bloom, Space/time Trade-offs in Hash Coding with Allowable Errors. Communications of the

ACM, vol. 13 (7). 1970, pp. 422-426.
[2] M. Jiang, C. Zhao, G. Xiang, A modified algorithm based on the bloom filter. The 6rd International

Congress on Image and Signal Processing (CISP 2013), Hangzhou, June 2013, p. 1087–1091

[4] Mengjun Xie, Heng Yin, Haining Wang. An effective defense against email spam laundering[C]
Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, Ioctober 30 - November 3, 2006. ACM, 2006.

[5] El-Sayed M. El-Alfy, Radwan E. Abdel-Aal. Using GMDH-based networks for improved spam
detection and email feature analysis [J]. Applied Soft Computing, 11(1):477-488.

[3] Li Zhuang, John Dunagan, Daniel R. Simon,etc. Characterizing Botnets from Email Spam Records[C]
 First USENIX Workshop on Large-Scale Exploits and Emergent Threats, April 15, 2008, San Francisco,
 CA, USA, Proceedings. 2008.

	Sebastian Nelson
	Sebastian889@gmail.com
	Abstract:In the age of big data, the prevalence an
	Keywords:Bloom Filter; Hash function; False positi
	1.Introduction
	2.An Improved Bloom Filter
	2.1.Classic Bloom Filter
	2.2.Mathematical Analysis

	
	4.Summary
	References

